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LOW-FREQUENCY NOISE REDUCTION OF SPACECRAFT STRUCTURES

By R. H. Lyon, C. W. Dietrich, E. E. Ungar,
R. W. Pyle, Jr., and R. E. Apfel

Bolt Beranek and Newman Inc.
Cambridge, Massachusetts

INTRODUCTION AND SUMMARY

There is an lncreasing interest on the part of engineers in
the low-frequency sound transmission of aerospace structures.
The prime reason for this interest is the discovery that low-
frequency noise may have physlological and psychoacoustic
effects on man (Refs. 1, 2), coupled with the fact that large
space vehicles are exposed to high levels of low-frequency
acoustic excitation from large rockets and from aerodynamic
excitation (Ref. 3). Quite aside from spacecraft applications,
low-frequency noise reduction considerations are important also
in the design of enclosures for the acoustic isolation of small
and compact electromechanical and electronic assemblies.

The sound-isolation effectiveness of an enclosure for a
given space is described by the noise reduction (NR) of the
enclosure. The NR of an enclosure is defined as the difference
between the sound pressure levels which occur at a position in
the enclosed space with and without use of the enclosure
(Ref. 4). The noise reduction (NR) should not be confused with
the transmission loss (TL), which is defined as the difference
between the acoustic power level incident on one side of an
infinite panel and that transmitted through the panel. The NR
depends on TL and acoustic properties of the receiving space.

Traditional acoustical engineering calculations of an
enclosure NR are based on the TL of its walls. However, the TL
concept does not apply for panels whose dimensions are smaller
than half an acoustic wavelength. At low frequencies the
acoustic half-wavelengths become so large that they exceed
typical major spacecraft structural dimensions; this "low-
frequency" range is the one considered in this report. The
exact extent of this frequency range clearly depends on the size
of the structure being considered. For the Apollo Command
Module, with a typical dimension of the order of 10 ft, the low-
frequency range encompasses all frequencies below 55 Hz. For
an electronic subassembly having a dimension of the order of 1 ft,
this frequency range extends from O to 550 Hz.

Low-frequency sound may cause digcomfort or inJury to person-
nel or may interfere with task-performance efficiency. Such



adverse effects appear to be assoclated with resonances of the
human body between 2 and 20 Hz (Ref. 1). Some of these
resonances are primarily due to body masses vibrating in combi-
nation with muscular and tendon compliances. Others involve
acoustical elements, e.g. the diaphragm may resonate with air
cavities within the lungs. Criteria for vibration and sound
environments for trained astronauts have not been fully
established at this time.

Probably the most important adverse psychoacoustic effect
of the low-frequency noilse is its interference with speech
communication ?Ref. 2). The entire acoustic spectrum con-
tributes to speech interference, of course, but low frequencies
present a particular problem since they are not attenuated
effectively by ear phones or head sets. Recent psychoacoustic
studies have also shown that high-level low-frequency noise can
have a masking effect over a frequency range which extends
several octaves above the noilse range. This effect is known
as '"the upward spread of masking."

The purpose of this report is to present an approach for
predicting the low-frequency nolse transmission of spacecraft
structures on the basis of a series of experimental and theo-
retical analyses. The approach developed here should aid the
spacecraft designer in estimating the low-frequency noise
reductions he may expect, and should provide him with sufficient
insight into the processes of sound transmission at low frequen-
cies to enable him to avoid spacecraft designs which will have
ineffective acoustic isolation at low frequencies.

Many of the calculations and discussions in this report
refer to an acoustic model based on the Apollo Command Module
(cM). This module is typical of spacecraft that have been built
at this time, and it is likely to be a prototype for others to
come. However, this report is not just concerned with the
Apollo CM; rather, it is concerned with developing a more
general, widely applicable acoustical model of axisymmetric
spacecraft of single- and double-shell configuration.

Data to be obtained from laboratory and flight tests of the
Apollo CM should prove extremely useful for further study of
many of the notions presented in this report. One may hope for
some agreement between the field data and the analyses presented
here. However, for any process as complex as sound and vibra-
tion transmission in complicated built-up structures, the
process of model development must be a continuing one. Although
many aspects of the models developed here are expected to shed
light on the test data, the test data are equally expected to
suggest modifications and changes in the models.



In the following pages we build up a conceptual model of
low-frequency sound transmission from a series of theoretical
and experimental analyses, which are intended to emphasize
various aspects of the structural and acoustic behavior of a
spacecraft. 1In the analysis of model systems, some of which
differ in appearance quite markedly from the actual spacecraft,
we shall indicate the limitations of each model (i.e., the
deviations of the ideal model behavior from the actual), and we
shall indicate the additional effects that must then be included.
Such a model development procedure is fairly commonly used in
architectural acoustics, where many competing effects can occur;
it is of the utmost inportance for the engineer to know over what
frequency range and under what conditions each of the competing
effects will have dominance.

It is also an important function of this report to suggest
acoustic models and experiments for testing some of the concepts
developed. Choices of such models (some of which may be similar
to small-scale models which we have studied) are indicated when
appropriate, based on experience gained in our test program.

Some of the major conclusions of this study are summarized
below:

1. Over an important portion of the low-frequency range
the noise transmission of shells is controlled by their
"quasi-static'" acoustic compliance. The compliance of
curved and dome-1ike shells tends to be membrane-
controlled. Such shells tend to be much stiffer than
flat shell segments, the compliance of which is
primarily flexure-controlled.

2. Acoustic resonances of contalned spaces may occur. In
the Apollo Command Module the space between the two
shells is narrow and long (as measured between the two
poles of symmetry). It thus permits the occurrence of
a low-frequency resonance which may drastically reduce
the low-frequency NR.

3. When flat segments are present, and when curved shells
are interrupted by relatively stiff reinforcing members,
volume-displacing structural resonances will occur at
low frequencies. These resonances will be deleterious
to noise reduction since they produce ''volume pumping’
and compression of the contained volume. The space-
craft desigh should avoid volume-pumping structural
resonances below the frequency of the first acoustic
mode of the contalned volume.



Acoustical resonances between the venting system and
the structural and acoustic elements of the spacecraft
may occur. The importance of such a resonance in
affecting NR will depend on the resonance frequency and
on the efficiency with which the exterior low-frequency
sound field can "drive" the resonance.

Well-thought-out experimental analysis 1s an important
adjunct to any acoustical-structural problem. This
study shows that this is particularly true in the case
of sound transmission, where many competing effects are
present. Noise reduction experiments which are regarded
only as proof tests, or as verification of a theoretical
analysis, will not be so effective or so illuminating

as tests which attempt to sort out competing vibrational
and acoustical effects and to rank-order these in
importance for the particular structure under considera-
tion.



SYMBOLS

radius of flat plate or circular section
effective cross-sectlon area

w(s) r(s)

effective cross-section area of cylindrical shell
partition area

surface areas of incremental volume

projected area of volume element in plane perpendlcular to SS

”~

projected area of volume element in plane perpendicular to ey

surface area of receiving room

sin BL + sinh BL

cos BL + cosh BL

sound speed of acoustic medium

slope

longitudinal wave speed in shell material

acoustic compliance of shell

acoustic compliance per unlt length of outer shell
acoustic compliance of contained volume

equivalent compliance of inner shell

acoustic compliance of contalined volume within shell
constants evaluated from boundary conditions
acoustic compliance of interspace volume 11

acoustic compliance of interspace volume 12



acoustic compliances of numbered
sections in Figs. 13, 14 and 15

command module

command service module

intercept
flexural rigidity
flexural rigidity of cylindrical shell

flexural rigidity of plate

unit vectors
Young's modulus

Young'ts modulus for cylindrical shell

frequency

lowest acoustical resonance frequency
modal resonance frequency

resonance frequency

lowest structural resonance frequency
ring frequency

displaced volume multiplying factor



g\ 5! rn

x>

sum of core thickness and average skin thickness
<éurface density)
Pp

homogeneous panel or skin thickness
"flare" factor of slender horn

helght of spherical segment

moment of inertia of cross section

Bessel function of order m

acoustic wave number at frequency w
wavenumber of horn resonance

individual mount stiffness

length of tube

length of c¢ylindrical shell

pressure level in ith room
circumferential mode number

constant dependent on shell properties
constant dependent on plate properties
edge moment, Eqg. (38)

acoustic mass, Eq. (93)

structural mass

mass of spar

acoustic mass of vent

number of shell sections

membrane forces in direction perpendicular
to plane of Fig. 9



membrane forces in v direction of Fig. 9

noise reduction

noise reduction of inner shell

noise reduction of outer shell

total noise reduction of inner and outer shells
modal density of exterior acoustlc space

shell modal density

applied pressure
pressure at s

solution of Webster's horn equation

mean-square pressure in frequency band dw
internal pressure Iincrease with applied pressure Py

mean-square reverberant acoustic pressure in ith room

mean-square pressure of internal sound fileld
in frequency band dw

-

2x10 microbar

{externally applied pressure, Eq. (8)

peak pressure produced at s=o, Eq. (150)

mean-square pressure of external sound fileld
in frequency band Lw

pressure at point Just external to CM
pressure produced at test point
pressure in interspace volume 11

pressure in interlior volume 12



o

PC on

SPL

panel perimeter
mean pressure

gas pressure in shell before application of
external pressure

average (static) pressure

amplitude of reflected pressure wave

constant dependent on shell propertiles
constant dependent on plate properties

shell tension load

radial distance from center of flat plate
distance from polar axis to any point on I
circular cross section of slender horn
initlial radius of slender horn

radius of curvature of surface at A

{room constant = A, a(l-a)-l, Eq. (6)

radius of sphere, Eq. (25)

lineal dimension along line of constant ¢

{surface area of spherical segment

linear coordinate of upper pole of median surface

inner shell
outer shell
horn cross sectional area

sound pressure level, also Lp
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&V

con

10

average skin thickness

core thickness

thickness of inner skin
thickness of outer skin

shape factor for slender horn
mean kinetic energy
transmission loss

radial shell deformation
flow velocity

components of flow velocity

{ratio defined by Eq. (38)
volume veloclty of shell mode

volume veloclty of source

volume velocity emitted through outer shell

due to source Uo

tangentlal displacement of shell
square of kinetlic energy of resonator
point motion of attachment to inner cylinder

source veloclty

{Volume decrease of shell with applied pressure Py
volume of air space, Eq. (94)

mean potential energy
incremental potential energy
volume contained in closed shell

volume of exterior acoustie space
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N N N N

spar

volume displaced by circular plate due only to
edge moment M

volume contained wlithin shell
volume displacement of end-capped shell due to

membrane action, Eq. (16)
interspace volume, Fig. 20

volume displacement of end-capped shell due to
axial loads, Eq. (17)

volume contained within inner shell, Fig. 20
radial displacement of shell

distance between A and B on line perpendicular to I

station locations on command module

cilrcumferentlial and axial coordinates on supported shell

displacement of circular flat plate

coordinates of cone frustra

impedance
point impedance of inner cylinder
point impedance of shell

translational impedance of spar
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"absorption coefficient, Eq. (4)

BL/2, Eq. (43)
parameter to be optimized, Eq. (145)

relative stiffness parameter defined by Eq. (20)

K
‘ "a— » Eq. (88) .

relative stiffness parameter defined by Eg. (20)
for cylindrical shell

ratio of speciflic heats of enclosed gas

median surface

radial expansion including reduction by Polsson effect
asymptotic frequency separation between structural modes
radlal expansion neglecting reduction by Poisson effect
increment

polar strain

circumferential straln

loss factor
radiation loss factor

structural loss factor

plate edge rotations (Fig. 12)
structural modal energy

modal energy of sound field

radius of gyration of shell cross section

acoustic wavelength at critical frequency




Poisson's ratio
Poisson's ratio for cylindrical shell
Polsson's ratio for plate

ratio of modal density of shell segment to
that of flat plate of equal area

3.1416
acoustic power incident on partition
radlated power from simple source

acoustic power transmitted by partition

density of acoustic medium
ambient density

density of panel material
axial wavenumber

incremental volume

azimuthal angle

flexural mode shape

pressure mode-shape function
cone flexure parameter

test functions for ilnterspace mode shape

frequency
panel acoustic critical frequency

frequency band including resonance frequency
of structural mode
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CHAPTER I

A REVIEW OF THE "CLASSICAL" NOISE REDUCTION

INTRODUCTION

Classical noise reduction (NR) calculations and concepts are
reviewed 1ln the present chapter in order to summarize the impor-
tant principles involved, to point out their ranges of applica-
bilityy and to indicate why and to what extent these classical
methods are generally inappropriate for dealing with the low-
frequency noise reduction of spacecraft.

The problems of predicting and designing for noise reduction
in buildings are treated routinely by architectural acousticians,
and much related information 1is available. However, virtually
all of the avallable and commonly employed data and concepts
pertain only to frequencies which are "high" in the present
context., The englineer concerned with spacecraft NR must be
aware of the limitations of the classical approach. (As a by-
product, understanding the classical approach should give him a
better insight into parallel approaches taken in this report.)

"CLASSICAL ANALYSIS"

Noise reduction is usually defined (in architectural
acoustics) in terms of an arrangement like that sketched in
Fig. 1, in which two acoustic spaces, a '"source room" and a

SOURCE ROOM RECEIVING ROOM
ALITITARRRNRRNRTIRNRNNNRMR \eeeeeeeeeeeeeeeaeeeeee\\

" PARTITION
AREA A

P2

AVERAGE
ABSORPTION @
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Yreceiving room," are separated by a partition., If a sound

generator in the source room produces a (space and time average)
mean-square reverberant acoustic pressure pié corresponding to
which there results a mean-square pressure Ps in the receiving
room, then the noise reduction of the partition is defined as

2
NR = 10 log pS/p5 = Ly - I, (1)

- 2,2 . _ -4
where Lbi = 10 log pi/pref’ with p__ - = 2 x 10" microbar
denoting the pressure level in the 1th room. Clearly, the "NR
afforded by the partition" depends not only on the partition,
but also on the acoustic absorption properties of the receiving
room,

An alternate common definition of NR equates the noise
reduction to the "insertion loss'" of the partition, i.e., to the
reduction in the pressure level in the receiving room resulting
from inserting the partition between the previously unseparated
rooms. One may note that Eq. (1) defines NR as the pressure
level difference between a source and a receiving space, with
the partition in place, whereas the insertion loss is the d4dirf-
ference in the pressure levels observed in the receiving space
before and after insertion of the partition. The insertion loss
of a partition depends on the test conditions imposed on the
source, in addition to partition and receiving room parameters.

(For example, holding pf constant generally results in different
source and receiver pressures than holding power radiated by the
source constant.)

One generally attempts to separate the contributions to NR
made by the partitions from those made by the test rooms. To
this purpose one defines the transmission loss (TL) of a parti-
tion as

TL = 10 log (ninc/htrans) (2)

where ninc denotes the acoustic power incident on the partition

from the source room side and ntrans that radiated by the
partition into the receiving room,

If the acoustic field in the source room is reverberant,

16



then ninc is related to the space-time mean-square pressure
2

p] as (Ref. 5)

2
Dine = % py/Hec (3)

where Ap denotes the partition area and pc the characteristic
impedance of the medium.

If one assumes that a fraction o of the power Htrans

transmitted through the partition into the receiving room is
absorbed at the walls of this room, then the power supplied to

the reverberant acoustic field in this room is (1 - a Htrans

In the steady state, this power input must be equal to the power
loss, which is equal to o times the power incident on the
receiving room walls. The power balance equation for the
receiving room is therefore

I (1 - @) = aa, p3/4pe (4)

trans
where At denotes the surface area of the receiving room. By
combining Egs. (1) through (4) one may obtain

NR = TL + 10 log R/A, (5)

where
-1 .
R=4 2 (1-a) (6)

is called the "room constant' of the receiving room and accounts
for the acoustic properties of that space.

The absorption coefficient a is usually a fairly slowly
varying function of frequency, tending to be rather low at low
frequencies and increasing with frequency. In designing
experimental test chambers one usually tries to keep o below
10 to 20%; for spaces where good wall absorption is desired
(such.as broadcast studios) o values between 50 and 90% may be
attained over the frequency range from 500 Hz to 2 kHz.

. The transmission loss of a partition structure 1s often
presumed to depend only on such "intrinsic" structural
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properties of the partition as mass per unit area, flexural
rigidity, and loss factor. (Thus, it is often presumed that by
doubling the partition area one doubles the transmitted power.)
This assumption is obviously invalid under conditions where the
measured TL is affected by panel geometry or area, e.g., at low
frequencies (for panel wavelengths of the order of a partition
edge dimension) where room and partition modes, as well as
acoustic diffraction effects, affect the transmitted power.

The characteristic behavior of the transmission loss of
panels, as indicated in Fig. 2, may be explained in terms of
the flexural motions of the panel and of how these act in the
radiation of sound. DBecause of the spatial distribution of
exciting pressures over the panel, virtually all flexural modes
are excited by the incident sound, even i1f this sound has energy
in only a narrow band of frequencies. But all of the modes will
not respond the same; modes whose resonance frequencies fall with-
in the excitation band will, of course, tend to respond more
strongly than others. In addition, all modes do not radiate
sound with the same efficiency. Modes whose spatial scales
(wavelengths) are greater than an acoustic wavelength radiate
sound relatively efficlently, whereas modes with shorter wave-
lengths radiate poorly (only about 1 to 109 as well as long-
wavelength modes).

In studylng the transmission loss of a given panel in a
given frequency range, one thus looks first for modes which are
both highly excited (i.e., resonant) and good radiators (i.e.
which have spatial scales that exceed the acoustic wavelength5.
Such modes dominate sound transmission, if they occur. Such
modes must have their resonances above the "critical frequency"
(discussed below), and obviously can be excited resonantly only
by excitation frequencies above this critical frequency.

The critical frequency of a panel 1s that frequency at
which the acoustic wavelength in the surrounding medium is equal
to the wavelength of flexural waves on the panel. Recalling
that the ratio of the acoustic to the flexural wavelength de-
creases with increasing frequency (since the acoustic wavelength
is inversely proportional to frequency, whereas the panel flexural
wavelength varies inversely as the square-root of frequency), one
notes that modes which resonate above the critical frequency have
wavelengths shorter than acoustic waves at the modal resonance
frequency, and hence radiate well when vibrating resonantly. On
the other hand, modes whose resonances fall below the critical
- frequency radiate poorly when vibrating at resonance.

For an excitation frequency band which lies well above the

panel fundamental resonances, but below the panel critical
frequency, 1t often occurs that the sound transmission is

18
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dominated by the many low-frequency, long-wavelength modes.
Although these modes are excited at frequencies which are much
higher than their resonances, their wavelengths may be longer
than the acoustic, so that they may radiate much better than

the few resonantly excited modes (which may have wavelengths
shorter than the acoustic). The responses of modes excited
above their resonances are "mass-controlled," that is, like

the high-frequency response of a spring-mass system, the modal
responses here are inversely proportional to the square of
frequency and to modal mass. In building partitions it often
-turns out that such mass-controlled modes dominate the transmis-
sion loss behavior in the frequency regions of interest; this
fact is the basis for the famous "mass law" (Ref. 6) of TL
(which corresponds to that portion of Fig. 2 which rises at 20
dB/decade). Also, the dominance of the sound radiated by non-
resonantly excited modes explains why the addition of structural
damping (which essentially reduces only the responses of the
resonantly excited modes) has no appreciable effect on the TL

of bullding panels even though such damping may result in marked
reductions of the panel vibration levels.

Now it is useful to return once more to Fig. 2, and to
interpret the characteristics of a typical transmission loss
curve in terms of the previously discussed phenomena. Below
the lowest panel resonance, the panel response (and thus the NR)
are controlled only by the panel stiffness. The portion of the
TL curve below the lowest panel resonance is fictious, since the
TL concept does not apply for such frequencies. At and near the
few lowest panel resonances the TL is small, because of the large
responses of the resonant modes. At somewhat higher frequencies,
up to about an octave below the coincidence frequency, one
encounters the "mass-law" region, in which sound radiated from
nonresonantly vibrating but well-radiating modes dominates
transmission.

Above the critical frequency the transmission loss decreases
once more (from mass-law conditions) because of the presence of
resonantly responding modes with good radiation efficiencies,
Because of the effect of damping on resonant response, increased
damping generally results in increased TL in this region. The
"plateau," shown dashed in the figure, may serve as an engineering
approximation to the average behavior in this frequency range.

An increase at a rate somewhat greater than 20 dB/decade is
usually observed at frequencies about an octave above the
critical, as modal resonances are increasingly damped out and the
curve tends back to the mass-law line.
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CONCLUSIONS

It has been pointed out that classical NR and TL
alculations apply only under certain conditions, most of
hich generally do not apply to spacecraft exposed to low-
regquency sound. For example, calculation of the NR by
.q. (5) involves the assumption of diffuse reverberant acoustic
'ields in the source and receiving spaces, and such fields can
e achieved only if very many acoustic modes of these spaces
articipate in the energy exchange process. Hence, this
ssumption cannot be met at or below the lowest-order acoustic
-esonances of a spacecraft "receiving space."

Similarly, classical (particularly mass-law) TL calculations
prply only for panels whosge dimensions encompass more than a few
coustic wavelengths. Hence these calculations are inappropriate
'or low frequencies, at which the acoustic wavelengths are longer

han, or of the order of, typical spacecraft or spacecraft panel
ii.nensions.
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CHAPTER ITI

A SURVEY OF LOW-FREQUENCY PRESSURE TRANSMISSION

INTRODUCTION

In the previous chapter the 'classical" procedures for
calculating noise reduction in architectural acoustics were
reviewed, and the conclusion was reached that these methods are
inappropriate for the calculation of spacecraft noise reduction
at low frequencies. The purpose of thls chapter is to suggest
the major mechanical and acoustical mechanisms that control
the transmission of sound pressure in spacecraft at low frequen-
cles, and to outline the calculations necessary for the prediction
of low-frequency NR.

We consider first some previous experiments and theoretical
calculations of pressure transmission 1n a small rectangular box
with flexible walls. It is found that particular types of
acoustical-mechanical behavior occur in specific frequency ranges
and that similar kinds of behavior will also occur 1n spacecraft.
However, the geometry and structure of spacecraft 1n general, and
of the Apollo CM in particular, differ in important ways from
those of the box, and therefore the analysis of spacecraft must
be done differently. This review of previous studies and
consideration of spacecraft configuratlons suggests a series of
specific technical analyses requilred for the prediction of low-
frequency pressure transmission; these analyses will be described
in the subsequent chapters.

THEORETICAL ANALYSIS

A theoretical analysis of a rectangular box consisting of
five rigid walls and a single flexible wall has been carried out
previously (Ref. 7). The box is considered to be exposed to a
reverberant sound fileld, and its noise reduction 1s defined as
the difference in sound pressure levels at a given position
within the box, with and without the presence of the box. The
acoustical critical frequency of the flexible panel is assumed
to be an octave or so above the lowest acoustic resonance
frequency of the enclosed space, and the lowest panel resonance
frequency is taken to be lower than this resonance frequency.

At frequencies above the first acoustic resonance both the -
panel and the contained acoustic space are resonant, and the
panel transmission can be described as outlined in Chapter I.
The calculated noise reduction of a particular box for these
frequencies is shown in the "high-frequency" range of Fig. 3.
Results of calculations for forced (mass-law) transmission
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and resonant-panel transmission are also given. For this
panel, it occurred that the resonant transmission dominated.
In this "high-frequency" range, therefore, both the structural
loss factor of the panel and the acoustical absorption coeffi-
cient of the contained volume affect the level of noise reduc-
tion that is obtained.

. Below the first acoustic resonance the enclosed volume
behaves like an acoustic compliance, and pressure 1s generated
within the volume principally due to net volume displacement
praduced by the flexible panel. If there are structural
resonances in this frequency range (and there were for the box
considered in the reference), then some of these resonances may
cause volume displacement, and therefore lncreased pressure,
over limited frequency intervals. The frequency 1interval over
which volume-pumping resonances will occur is termed the '"mid-
frequency" range in Fig. 3. This interval usually lies between
the first mechanical resonance of the panel and the lowest
acoustic resonance frequency. In the "mid-frequency" range the
noise reduction is dependent upon the structural damping of
the panel, but is independent of the acoustic absorption
within the enclosed cavity. The only parameters of an acoustic
cavity which are important in this range are those which affect
the cavity's acoustic compliance, namely, cavity volume and gas
pressure.

If relatively wide bandwidths of acoustic noise are used,
then several volume-displacing modes of the panel may contribute
simultaneously to the noise reduction. With this assumption,
the NR is bandwidth-independent, and behaves as the "average'" NR
shown in Fig. 3. If the bandwidth is narrower, then only one
volume-displacing mode at a time may be excited, and the NR may
be bandwidth-dependent. The result of the calculation for a
particular box for an 8% band (one-tenth octave) is shown in
Fig. 3 labelled "single-mode NR, 8% bands."

Finally, at frequencies below the lowest mechanical and
acoustical resonances, both the flexible panel and the contained
volume behave as mechanical compliances. The mechanical com-
pliance of the panel depends on its size, flexural rigidity and
mounting. The acoustic compliance depends on the contalned
volume and pressure. It 1s essentially the ratio of these
compliances that controls the low-frequency pressure transmission.
The panel compliance in the reference was computed for both
simply supported and clamped-edge mountings. These two arrange-
ments result in panel compliances differing by a factor of 3 for
this configuration. The noise reduction in this "low-frequency"
regime 1s independent of frequency, structural damping, and
acoustic absorption. The results of the calculation of NR for
this regime are also shown in Fig. 3.
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We define as the "low-frequency' region of NR for space-
craft essentially the combination of the "low-frequency" and the
"mid-frequency" regimes (il.e., the frequency range below the
first acoustic resonance of the contained volume).

A theoretical and experimental analysis of the NR of boxes
with six flexible sides has been presented by Eichler (Ref. 8).
The general form of Eichler's calculations is similar to that
above, but the treatment is refined by accounting for the energy
reradiated by the enclosed cavity back into the surrounding room.
Some experimental results for an aluminum box of 1/16 in. wall
thickness, having dimensions roughly 12 x 18 x 16 in., are shown
in Fig. 4. The lowest mechanical resonance occurs at approxi-
mately 60 Hz and the first acoustic resonance of the interior
volume at about 400- Hz. Displayed, along with the experimental
data, are the theoretical results for noise reduction in the
compliance-controlled "low-frequency" region, and "average" and
"lower bound" calculations for the noise reduction in the "mid-
frequency" region.

CONCLUSIONS

Although the rectangular box is geometrically and dynamically
different from the axisymmetric spacecraft shapes to which we are
accustomed, the analyses described above shed considerable light
on the procedures one should follow in developing a theory of NR.
Clearly, the acoustic compliance for slow pressure changes on
the shell 1s an important parameter in predicting its very-low-
frequency noise reduction. Accordingly, in Chapter III general
procedures will be outlined for determining the quasi-static
acoustlic compliance of axisymmetric shells.

The axial symmetry of spacecraft has another important
kinematic result. It requires that mode shape functions be of
the form of sin m¢, cos m¢p, where ¢ is the azimuthal angle and m
is an integer. For m # O the net volume displacement of such
modes vanishes. For m = O the membrane stresses in the shell
cause these modes to resonate at comparatively high frequencies,
well above the range of "low frequencies'" which are of concern
in this report.

In the discussion of box NR the important effect of volume-
pumping structural modes on the noise reduction was clearly
established. The absence of low-frequency volume-pumping modes
for homogeneous axisymmetric shells can cause the quasi-static
compliance-controlled NR behavior to extend up to the first
acoustical resonance. However, volume-pumping structural
resonances may be introduced by major structural discontinuilties
or shell elements that allow m = O resonances to occur in the
low-frequency region. We shall see the effect of this behavior
in subsequent discussions.
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The studies of rectangular boxes do not anticipate some
important acoustical and mechanical effects in spacecraft like
the Apollo CM. While some of these effects are related to the
double~-shell construction of the Apollo CM, others are due to
the venting system, the use of segmented sandwich construction,
and the effects of materials and equipment that are placed
within the acoustic cavities. In subsequent chapters we deal
with many of these effects in some detail and try to recommend
remedial actions that can be taken when such effects cause
abnormally low noise reduction in important frequency ranges.
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CHAPTER III

QUASI-STATIC PRESSURE TRANSMISSION OF SHELLS

INTRODUCTION

In this chapter we develop the theory of pressure transmis-
sion in single- and double-walled elastlic shells. The nolse
reduction (NR) can be expressed in terms of shell and volume
compliances.

A major portion of this chapter is devoted to finding the
acoustic compliance of elastic shells, and the proper combina-
tion of these compliance elements to represent a spacecraft
structure. We discuss the principal forms of elastic deforma-
tions of the shell — membrane and flexural — and the conditions
under which one or the other of these will dominate.

With this background, it 1s then possible to predict the
low-frequency NR of spacecraft. The chapter is concluded with
a calculation of the NR of the Apollo Command Module (CM)

PRELIMINARY REMARKS
Noise Reduction

If a pressure Pg is applied guasi-statically on the exterior

of a closed gas-filled elastic shell structure which is initially

at equilibrium, then this structure will deflect, the volume Vcon

contained in it will decrease by an amount V, and the pressure in
the interior will increase by an amount pi. According to the

well-known ideal gas laws, this pressure increase is related to
the volume change according to (Ref. 9)

P- A%
i v con _
= v s V=0p =P C (7)
Pcon Vcon ’ 1 rchon 1 “con
where P denotes the pressure of the gas contained within the

con
structure before the external pressure is applied and v denotes
the ratio of specific heats of the enclosed gas (Ref. 10). Ccon

is defined as the acoustic compliance of the contained volume.
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The volume decrease V of an elastic shell is proportional
to the applied pressure difference. Thus one may write

v = c(p, - p,) (8)

where C is defined as the acoustic compliance of the shell and
may be computed from its elastic deformations.

By combining Egs. (7) and (8) one finds that the ratio of
Py to pi can be expressed as

p C, :
o _ con

If p, denotes the amplitude of the (slowly) oscillating external
acoustic pressure, and p; & similar interior quantity, then the
NR (in decibels) will be 20 1oglo(po/pi). For low-frequency

acoustic excitation (i.e., below any volume-displacing structural
resonance), one may calculate the NR of a given elastic shell
from

NR(dB) = 20 log [ 1+ Cg°“ ] (10)

These results can also be obtained from the equivalent circuit
representation in Fig. 5. In this diagram, volume velocity is
the "flow" quantity, and pressure fluctuation (relative to
ambient) is the "drop" or "potential" quantity.

o—i} -I- 0
Ccon P;

Py .I.
. O

FIG.5 EQUIVALENT ACOUSTICAL CIRCUIT FOR
SHELL-ENCLOSED VOLUME

0o

30



The subsequent sections deal in some detall with the
analytical determination of the volume/pressure proportionality
factor C for some often-encountered shells and for some composites
typical of the Apollo Command Module.

Plate and Shell Rigidities

The subsequent analyses are carried out in relatively general
terms, involving only the dimensions of the shells and their ex-
tensional and flexural rigidities (per unit length). The results
are thus equally applicable to homogeneous and to sandwlich shells.

The extensional stiffness of a shell per unit edge length
may be expressed as EA, where E denotes Young's modulus and A

the cross-section area (per unit edge length) that is effective
in extension. Thus, with the dimensions deflned in Fig. 6,

H for homogeneous shells
(11)

2t for sandwlich shells
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FIG.6 SHELL SECTION DIMENSIONS
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Here, and subsequently, the core of a sandwich structure is
assumed to have no extensional stiffness and to be extremely
rigid in shear.

The flexural rigidity D = EI of a plate or shell is found
from computing the moment of inertia of the cross section, I,

EH3/12 for homogeneous shells
D = (12)

2 . *
Eh®/2 for sandwich shells

where the cross-~section dimensions H, h, t again are those de-
fined in Fig. 6.

CIRCULAR PLATES
The displacement y of an elastic circular flat plate

simply supported at its circumference and subject to a uniform
pressure p (rig. 7) 1s given by the expression (Ref. 11)

empF e () (3 (8) ] e

FIG.7 FLAT CIRCULAR PLATE WITH
SIMPLY SUPPORTED CIRCUMFERENCE
SUBJECT TO UNIFORM PRESSURE

¥*

Thls expression is valid only for shells with nearly equal skins.
A much more complex (but easily derived) relation holds for shells
with grossly unequal skins.
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The displacement of a similar plate, but with clamped circumfer-
ence, is given by (Ref. 12)

2

v-wm[r-(3)] (s

From these expressions one may readily calculate the volume
V displaced as the plate deforms:

a

Vv = QT/\ y(r) r dr
0]

One finds

(H—; =~ 5,6 for simply supported edge

192 V. D _ (15)

TP a
1 for clamped edge

where the above approximate numerical value is obtained for a
typical Poisson's ratio of vV = 0.3.

Clearly, the support conditions at the circumference play
an important role in establishing the volume displacement due to
flexural motion, and they should be taken into account as real-
istically as possible in any practical calculation.

CYLINDRICAL SHELLS

A cylindrical shell (Fig. 8) subJect to a uniform internal
pressure p increases in radius by an amount 60 = pae/EA if no

axial stresses are applied to it at its edges and 1f the edges
are also unrestrailned otherwise (Ref. 13). If the internal
pressure acts also on end-caps and thus causes axlal tension in

33



-
"Wy

G L

AUIHITININININNIINIINNININNNNNY

FIG.8 CYLINDRICAL SHELL SUBJECT
TO INTERNAL PRESSURE

the shell, then the radial expansion i1s reduced due to the Poilsson
effect and is given by 6 = 60(1 - v/2).

The volume displacement due to '"membrane action" of the
shell for the end-capped case thus is given by

Vv, = 2malL 5,(1 - ¥/2) = 2w(1 - V/2) p a3L/EA (16)

However, the axial loads also cause the shell to increase in

length by an amount AL = p(1l - V)aL/2EA, which results in an
additional volume displacement,

V, = ma® AL = wa3L(1 - V)p/EA (17)

Thus, the total volume displacement of an end-capped cylindrical
shell due to membrane action is given by

3
v=vl+v2=1‘ﬁ—2<%-2V> (18)
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Radial constraints imposed on the edges of the c¢ylindrical
shell reduce the deflections, and thus the volume displacement.
In a later section of this chapter, pp. 44-46, it is shown that
sinmple supports and rigid clamps at the edges have the effect of
multiplying the above Vl volume contribution by a factor F,
where

sinh BL + sin BL
1l - T{cos T Gos for simply supported edges.

F = - (19)

1 - 2(cosh PL - cos BL) for clamped edges
BE{sIEH BL + siIn BE%

The parameter B 1is defined by

4

B* = EA/42°D (20)

and BL is a measure of the membrane rigidity relative to the
flexural rigidity. From Egs. (11) and (12),

1.285A/aH for homogeneous shells
B = (21)
14 ah for sandwlch shells

The apgroximate numerical coefficient above corresponds to the
typical Poisson's ratio value of 0.3,

It is of interest to note that, for BL > 3, Eq. (19) reduces
to

1 - (BL)"1 for simply supported edges

F = (22)
1 - ’2(6L)'1 for clamped edges

Thus, for BL > 20, F differs from unity by less than 10% for all
boundary conditions; i.e., then flexure has no appreciable effect
on the shell displacement volume.
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MEMBRANE DEFORMATIONS OF SHELLS OF REVOLUTION
General Relations

As evident from this analysis of cylindrical shells, the
deformations due to edge constraints often have relatively little
effect on the total volume displacement produced by an applied
pressure. Except for very "short" shells, the volume displace-
ment is almost entirely associated wlith membrane deformations of
the shell; the flexural deformations associated with the edge
condlitions may then be neglected.

. It is known that for conical- or spherical-segment shells
the effects of edge loads are attenuated more rapidly (with
distance along the shell) than for similar cylindrical shells
(Refs. 14, 15). Thus, one may hope to obtain reasonable approxima-
tions to the "volume displacement" of non-cylindrical shells by
neglecting flexure effects, consideration of which would lead
generally to lengthy and complicated calculations.

Conslder a general shell of revolution subject to axially
symmetrical loading. Let T denote the radial distance measured

from the shell axis to a generic point A on the shell mild-surface,
and let ry denote the radius of curvature of this surface measured

at A in a plane containing the- shell axis (Fig. 9). One finds
from Timoshenko (Ref. 16) that one may write the following

F1G.9 GENERAL SHELL OF REVOLUTION
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expressions for the normal displacement w and the tangential
displacement v of the shell:

r
_ O
W—VCOt¢+m(Ne-VN¢)

v = sin ¢ [ C +‘/\£é%%{%2~] > (23)

er rO
sa-2(0) = Ny () + 5 g 'Ne<m+"r1)

/

Here C is a constant of integration, which must be evaluated from

boundary conditions, and N¢ and N, denote the membrane (tension)

forces (per unit length along the surface) acting respectively in
the "v" direction of Fig. 9 and perpendicular to the plane of
this figure.

The membrane forces can be evaluated directly from equili-
brium conditions. For a loading consisting of a pressure p (here
taken as positive in the positive w direction of Fig. 9), one
obtains (Ref. 17)

Ne"’%(""'f@)
\ (24)

¢
1
N¢=‘mf P Tro Ty cos ¢ ad
o

s

Thus, one may determine the volume displaced by the membrane
deformation of the shell (produced by an applied pressure p) by
calculating N¢, Ne from Eq. (24), then substituting the results

into Eq. (23) to find w, adjusting C to satisfy the appropriate
boundary condition, then integrating w over the entire shell
surface.
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Spherical Segment

For the special case of a spherical shell (or a portion
thereof), r; = Rand r, = R sin ¢, where R denotes the radius of

the sphere. Then

o)

N¢ =-p R/, N6 = p R/2
£(¢) =0
> (25)
v=2C sin ¢

2
W= EQ%I (1 - V) + Ccos ¢

If the tangential displacement is prescribed to vanish at some
location other than at ¢ = 0, then C = 0, v = 0 and the above
relation for w is also correspondingly reduced.

P

Thus, the volume dlsplaced by membrane deflection of a
spherical segment of height Ho i1s given by

2
p R
V=Rt - (26)
if v = 0, where
S =2r R H_ (27)

denotes the surface area of the spherical segment.

The relations presented here may also be readlly applied to
shells which are toroidal segments, or to the numerical analysis
of any given shell of revolution. However, they are not directly
suited for dealing with conical shells, since for such shells the
radius of curvature rq is infinite.
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Conical Shell

For a shell whose mlddle surface is a full or frustrated
right circular cone (Fig. 10) one finds that

N¢ =-p ro/é sin ¢ (28).

if the top of the frustum is closed off in any manner. This rela-
tion may be obtained directly from equilibrium considerations.

F1G.10 FRUSTRATED CONICAL SHELL

From Eq. (24) one also obtains

Ny =-p ro/éin ¢ (29)

since here r, is infinite.

1

The stress-strain relations (Ref. 18) are
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€«EA=N, - VN

? (30)
ee.EA =N. -V N

The volume displacement of a conical shell can be found
from consideration of the volume element shown in Fig. 11.

e ro ,
ds ) drs' y
Z

\ y +dy

FIG.11 VOLUME ELEMENTS OF AXISYMMETRIC SHELL

When a pressure differential 1is applied to the conical
shell, the volume enclosed by the shell element of height dy

]
decreases from vrgdy to wrozdy, or by an amount

av = m(r % - r%) ay (31)

If the circumferential strain is € _, then the new radius r; is

1
(1 + €9) times the initial radius r_, and r02 - rg = r 2€, if

6
higher-order terms in Ge are neglected.
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The total volume displacement between the two coordinates
Y = Vg ¥y is given by

Yy Yy
2
V=f dV=21rf ry Ge dy (32)
Y, Ya
From Egs. (28) through (30),
D ro
€6=—m(l-v/2) (33)
"nus, substituting r, =Y cot ¢,
4 L, .
_ V_7(b’ -a’)
C= -5 = 2FEcos ¢ (1 -v/2) (34)

This result applies to cases where the ends Yar Yp do not move.

In cases where the ends do move, the volume displacements due
to the end motions must also be taken into account.

PLATE TERMINATING LONG CYLINDRICAL SHELL

In view of the important effect that edge support condiltions
have on the deformations of circular plates and on the assoclated
volume displacement, it is of Iinterest to consider in some more

detail a plate whose circumference is connected to a cylindrical
shell.

Such a plate-plus-shell composite structure may be analyzed
by calculating the deformations of the individual component
structures produced by the applied pressures and the interaction
loads shown in Fig. 12. With the conventions indicated in that

figure one may write the plate and shell edge rotations 6_ and
6 as
c
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r
{ (35)
O, = mc-M +q, P
namm—
' p O+0p
LAl
- e
Q
w Q
D+6,

T O

ITTTTT=

AR X
o
l

FIG.12 DISCONTINUITY ANALYSIS OF PLATE
TERMINATING LONG CYLINDRICAL SHELL

The first of these relations represents the plate edge rotation
produced by the edge moment M and an external pressure p; the
second represents a similarly produced cylindrical shell edge

rotation., The coefficients mp and qp are constants that depend

on the plate properties; m, and qe similarly depend only on the

shell properties. (The plate deformation i1s assumed to be
unaffected by the in-plane load P. The radial shell deformation
u is assumed to be unaffected by the shell tension load Q, and
u = 0 is assumed at the junction, corresponding to zero radial
deformation of the plate.)
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From expressions given by (Ref. 19) one may determine

3
= a - a

and from Timoshenko's discussion of cylindrical shells (Ref. 20)
one may obtailn

B, a
Q@ =-77x \1- °), m, = mrp- (37)
¢ cC ¢ z ¢ cc

where subscripts p and ¢ have been appended to the previously
introduced symbols in order to distinguish between those pertain-
ing to the plate and those referring to the cylindrical shell

For the case where the plate and shell edges are rigidly
Joined to each other one may set ep = ec and obtain

v
C
1 BBl - %) (1-2)
M _ 9 -~ 9 8 "E A

3 _ _ee ® =vU  (38)
a2p 3:2(mp -m)) D (1 + V)

c 1l + -é&r—fr—%%-

The volume V displaced by the circular plate due only to

application of an edge moment M may be calculated from the
appropriate deflection equation (Ref. 19) to be given by

N
v = Ta M

= v
4‘Dp(1 +

) (39)
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whereas the volume displaced due only to an applied pressure is
given by the first of Eqs. (15). The net volume displaced by the
plate due to both the applied pressure and the edge moment
supplied by the cylindrical shell is found to be given by

1ra6p *'p [ r—’V‘fUp] (40)

in view of Egs. (38), (39) and (18). Here U denotes the ratio
given by Eq. (38), and the coefficient of the bracketed term may
be recognized as the volume displacement of a simply supported
plate.

EFFECT OF EDGE CONSTRAINTS ON VOLUME DISPLACEMENT
OF CYLINDRICAL SHELLS

The radial displacement w of a cylindrical shell (Fig. 8)
is given by an expression of the form (Ref. 13)

w = -5+ C; sin Bx sinh Bx + C, cos Bx cosh Bx (41)

if terms that are anti-symmetric with respect to the middle of the
cylinder are discarded (in view of the symmetry of the solutions
required here). Here 5 denotes the radial membrane expansion, as
discussed in the paragraph preceding Eq. (16), and B is the
relative stiffness parameter defined in Eq. (20). The constants

C1 and 02 may be evaluated from the conditions prescribed at the
boundaries.
For simp supported edges the boundary conditions are
w(L/2) = w' (L 0, for which one finds (Ref. 13):
Cl BS = 26 sinh o sin o
C, By = 26 cosh a cos o > (42)
B, = cos BL + cosh BL
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‘here

= BL/2

18 been introduced for the sake of convenience. For clam ed
-dges, for which the boundary conditions are w(L/2) =

ne similarly obtains:

C;*B, = 26 (cosh @ sin a ~ sinh @ cos a)

C,*B, = 26 (cosh @ sin a + sinh a cos a)

Bc = sin BL 4+ sinh BL

The volume V displaced may be obtained from Eq. (41) as

L/2

V= -2‘n'af W(X) dx
-L/2

C
= 27adL [ 1l - EB% (cosh a sin o - sinh a cos a)

C
- EB% (cosh a sin @ + sinh a cos a) ]

/

(43)

w! (L/z) = 0,

(44)

(45)
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Substitution of Egs. (42) and (44) into (45) permits one to write
V = (2masL)«F

where

( (sinh BL + sin BL)

1- BL{cosh BL + cos BL) for simply supported edges

F =< (46)

2(cosh BL - cos BL
1l - TSt T T sin Lg for clamped edges

This result has been quoted previously, as Eq. (19).

.

APPLICATION TO APOLLO CM

This section presents results of our efforts to estimate
the low-frequency NR of the Apollo CM. Our model of the exterior
sound-pressure field at low frequencies is one of simple spatially
uniform compression. A simplified diagram of the CM shell system
1s shown in Fig. 13. It consists of separate outer and inner
shells, mounted on a cylindrical fairing to the service module
(SM). Our analysis procedure consists of dividing the shells
into simple geometrical shapes (frustrated cones, cylinders,
spherical segments, planes), using the previously presented
results to calculate the acoustical compliances (ratio of volume
displacement to pressure differential) due to each structural
segment, and then to add all effects in order to obtain the
compliance of the complete shell.

After we have computed the acoustic compliances, we combine
them appropriately to determine the net NR of the total structure,
i.e., the ratio of the external acoustic pressure to that in the
space within the inner shell. By this process we are able to
single out those structural elements which result in the least
NR. Once these "weak 1links" have been ldentified, one should be
able to suggest ways to increase the system NR if this seems
desirable.
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Description of the Structure

General Features.—The two axisymmetric shells that make up
the basic structure of the CM are formed from metal sandwich
panels. Stainless steel is used for the outer shell, and
aluminum for the inner one. The thickness and density of the
sandwich core and the facing sheets for the sandwich vary along
the axis of the module. There are structural lrregularities
on the surface of the shells due to strengthening members,
hatches, compartments, etc.

The volume between the two shells has added thermal insula-
tion in the form of blankets of "Q-felt," a glass-fiber blanket
covered with aluminum foil. The outer surface of the CM is
covered with an ablative coating of varying thickness. (The
acoustical and mechanical effects of the Q-felt and the ablative
coating will not be considered here.) The volume within the
inner shell is partially filled with equipment and personnel.

Description of Outer Shell.—For the purposes of our analysis,
the outer shell, shown in Fig. 14, will be treated as a right
circular cone with a generating angle of 30° and a base radius
of 72 in., connected to a base which is a spherical segment
having a radius of curvature of 180 in. The dimensions of the
sandwich panels are given in Table I, in terms of the notation
defined in Fig. 6.

The upper part of the conical section 1 (see Fig. 14)
consists of a stainless steel sandwich made of 8-mil facing
plates on an 0.592-in. thick core having a density of 5.7 1b/
cu ft. The lower part 2 has the same facing skins but a core
0.51 in. thick with a density of 5.4 1b/cu ft. The spherical
base is made from a stainless steel sandwich with 61-mil skins
and a 2-1in. core with a density of 5.4 1b/cu ft.

Description of Inner Shell.—We have divided the inner shell
of the CM into six structural elements: upper hatch cover 4,
upper hatch cylinder 5, ledge 6, cone 7, lower cylinder 8 (actually
a frustrated cone) and spherical base 9. These surfaces are not
structurally homogeneous since they all, and particularly the
cone 7, have hatches, windows, structural reinforcements, conduits,
ete.

The dimensions of the inner shell structural elements are
shown in Fig. 15. Except for the hatch cover 4, all dimensions
and sandwich specifications have been taken from NASA
drawings. On the base 9 there 1s a gradation in core density;
the core sandwich material 1s lighter in the center and becomes
progressively more dense toward the periphery.
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TABLE I

DIMENSIONS AND MATERIALS OF SANDWICH PANELS
- SHOWN IN FIG. 13

Thickness of
Section| Material Thégﬁﬁgss O&ggirsiggs t=i(t +tary) =t +¢t
£ (in.) fops tem S\'rATCPB c
(1073 in.)
1 steel 0.592 8,8 0.600
2 . 0.50 8,8 0.508
3 " 2.0 68,68 68 2,068
4 aluminum 1.18 20,20 20 1.20
5 " 0.25 10,10 10 0.26
6 " 0.72 16,22 19 0.739
7 " 0.92 20,20 20 0.94
8 " 0.75 16,16 16 0.766
9 " 1.50 33,33 33 1.533
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h=0.51"

=2.061"

(3) }
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FIG. 14 MAJOR STRUCTURAL SECTIONS OF OUTER SHEL
(STAINLESS STEEL SANDWICH)
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Properties of Contained Volumes.—The inner shell contains a

volume of approximately 4.75 x 10° cu in., or about 275 cu ft.
If we assume that roughly one-~third of this is occupied by
equipment and personnel, we estimate the free volume to be

3 x lO5 cu in.

The acoustic compliance of a contained free volume V is
given in Eq. (7). For the volume contained by the inner shell,
the acoustilic complliance is

Cip =3 % 105/20 = 1.5 x 10" (in)3/ps1 - (47)

1

The total volume enclosed by the outer shell is approximately
8 x 10° cu in. If we deduct from this the inner volume, we have

left 3.25 x lO5 cu in. FPFurther, subtracting 0.25 x lO5 cu in.,
the estimated volume of the inner shell wall structure plus the
rest of the volume-occupying elements in the space contained

between the shells, leaves 3 x lO5 cu in. for the contained
volume. If the pressure variations in this space are adiabatic
its compliance 1s given by (7). However, because of the presence
of the Q-felt, the pressure variations are likely to be more
nearly 1lsothermal. The compliance then is (Ref. 10)

4 L]
Ci; = g; =2 x 10 E%E%E (isothermal) (48)

P, denotes the average (static) pressure in the space.

The temperature and density assumed for the air in the
interlior volumes are those at launch. If the average pressure
Po is reduced, the acoustic¢ compliance of the volume is increased,

but the mechanical compllances are not changed, since the struc-
tural mechanlcs are not significantly affected by ambient
pressure. The effect of reduced pressure Po thus is to increase
the NR of the structure.

Other Noise-Transmitting Elements.—In addition to the
previously discussed major elements which affect the acoustic
transmission, elements which form a "mechanical bridge" between
the two shells, i.e., which facilitate the transmission of
vibrations and sound in localized regions, can influence the
NR significantly. The assessment of the effect on NR of electrica
and service connections between the shells will be aided by a
better understanding of the structural dynamics. We shall defer
discussion of bridging elements to chapter VI.
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Dynamics of Structure

In this section we review those aspects of the dynamlcal
behavior of the structure shown in Fig. 13 which are pertinent
to the pressure transmission characteristics of that structure.
We concentrate on the quasi-static "forced" motion of the
mechanical structure and the acoustlic spaces. The resonant
vibrations of the structure and/or the acoustic spaces will be
discussed later. '

Quasli-Static or "Forced" Motion of Shells.—Our investiga-
tions in Chapter II indicated that a substantial portion of low-
frequency noise within the CM will be due to forced, nonresonant
response of the inner and outer shells and the connecting air
space. The nature of the motion will be different from that of
the flat wall discussed in Chapter I. Since the volume-displacing
modes of cylinders, for example, occur at or near the "ring
resonance' frequency, these modes which couple well to the sound
field generally will resonate above the frequency range of interest.
In contrast to the wall transmission, which has a mass-controlled
response, the forced-wave transmission for axisymmetric shells
is stiffness-controlled. We evaluate the volume dlsplacement
of the shells, therefore, by quasi-static calculatdons of
deflection due to a constant pressure differential. Resonance
effects will be considered in Chapter IV.

The quasi-static volume displacements of several elementary
shell structures have been analyzed previously. In order to
obtain the total volume deflection of the inner shell of the CM,
we must know the pressure differential between the interspace
volume 11 and the contained volume 12. In order to obtain the
pressure in 11, we must know the difference in the volume
deflections of the inner and outer shells. In this section we
shall derive these parameters.

Acoustic Compliance of Inner Shell.—The structural elements
of the inner shell, as illustrated in Fig. 15, will now be con-
sidered separately as acoustic compllance elements. The
cylindrical hatch 5 was described above under Description of
Inner Shell., From Eq. (21)

BL = 2= = —33 - 16.7 (49)
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Since, as previously discussed, a large value of BL indicates
that flexural effects are relatively unimportant, one may here
estimate the volume displacement of the shell on the basis of
only its membrane deflection. From Eq. (18), the ratio of
volume displacement to pressure differential for this cylindrical
shell then is

3
5 =3 = Bpe (5/2 - 2v)

3
= 1122%21§§L7 (1.9) = 3.33 cu in./psi
2(107°) 10

> (50)

The hatch cover 4 and the ledge 6 may be treated together
as a single flat circular plate with a radius of 35.6 in. An
error 1in volume displacement may be expected in this treatment,
because the boundary conditions on the inner edge of ledge 6
and on the outer edge of the cover 4 are not properly represented.
However, the error is thought to be relatively unimportant and
not to warrant the additional complications involved in more
exact calculations. From Eqs. (15) and (12), the compliance
for the cover and ledge combination 1s found to be

wa6 wa6
Cy,6 = TO2D (5.6) = (5.6) gggzg;
(51)
- 7(35.6)° — (5.6) = (5.6)(6.3)-10% cu in./psi

96 10! (0.74)°(1.9)10

In the foregoing relation the factor of 5.6 should be included
if the plate edges are supported; it should be omitted if they
are clamped. In elther event, the plate compliance Cq 6 is

L)

substantially larger than the shell compliance C5, and the
inner volume compliance C,,, Eq. (47), is greater than the
plate complilance,

54



The conical section 7 will be membrane-controlled if
wsa>>l, where (Refs. 14, 15)

4 EA sin2¢ (52)
S

4a“D

¥

and a is the radius of the base of the conical section. For
section 7

v (Bomn )2 - [ 22 =05 0w

We conclude that this section will act as a membrane. The
acoustical compliance of the conlcal section is found from

Eq. (34),
°7 = ".a;,lEAlc;svée) [(%)4 -1 ] (54)

with b/a = 1.69, a

35.6 in., ¢ = 60°, A = 16 x 10~3 in.,
E = 107 psi, and Vv

0.3, to be

Cz = 190 cu in./psi (55)

If we treat section 8 as a cylinder, we find its compliance
from Eq. (50) to be

w(60)3(29)(1 2% = 1.17 x 10° cu 1in./psi (56)
2(10 )(1.6 x 107°)

a value which is fairly close to C7.

The spherical base has a membrane compliance given by

09 = mg (1 - v) (57)
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where R 1s the radius of curvature and H0 is the height of the

spherical segment. If R = 180 in., t = 0.033 in., and H =
9.7 in.,

7(1.8)3(9.7)10%(0.7) _ ; g 2
= = 1. 10 .
2 (3.3) 1072 1071 2 x cu in./psi (58)

We can get an estimate of the validity of this membrane
result by applying the criterion for a cone, as stated just
before Eq. (52). We could use an average value of

aesin2¢. But instead, we merely note that

2 2
(v )t (flnﬁ_x) 510 o = (122 ) (0.16) = 256 (59)

where a = 60 in. and ¢ = 24°, If we correct this upper
max max -~ 5 5
bound value by factors of (1/3)° for averages over sin“¢ and
2

a, we find Wsa = 2,5, which indicates that membrane stiffness
will indeed dominate.

It appears that the ledge structure 6 is the most compliant
part of the internal shell structure.

Acoustic Compliance of Outer Shell.—Referring to Fig. 14,
we note that there is a break in the structure and different
sandwich constructions are used for sections 1 and 2. However,
the volume-displacing membrane deformation i1s governed by the
facing thickness "t)' and this is continuous. We therefore
calculate the shell complliance for sections 1 and 2 as a single
element. The volume displacement of a complete cone is given by
Eq. (34) with a = 0. For the cone in Fig. 14, b = 76 in.,
¢ = 609 and t = 0.008 in. This gives
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(1 - v/2) _ (76)" (.8)2 )
“Bt cosé (3 x 107)(8 x 1073)

(60)

= 190 cu in./psi

The base 3 of the outer shell is a spherical segment concentric
with section 9 of the inner shell. (Although it is shielded
from exterior pressures by the Command Service Module (CSM)
fairing, it will be subject to low-frequency sound pressures
that are transmitted through the fairing.) We assume that the

compliance of section 3 is membrane-controlled. Its compliance
is given by Eq. (26),

3 = =g (1 - V) (61)

with H = 24 in., R = 180 in., t = 61 mils. For steel the

Young's modulus is E = 3 x 107 psi and Polisson's ratio is
V = 0,3. The result is

_ 7(180)3- 24 (0.7)
3 2x2x10 x 61 x 10”

2

C = 1.44 x 10° cu in./psi (62)

Since this part of the structure is shielded by the CSM fairing,
it probably has no significant effect on the NR. We include it
in our NR calculation, however, since it will contribute to
transmission under test conditions, where the CSM fairing is
not present.
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Calculation of Nolse Reduction

The noise reduction for a shell enclosing a volume 1is derived
earlier in this chapter, and the result is given in Eq. (10). The
governing equations were represented by the equivalent acoustical
circuit shown in Fig. 5. An equivalent circuit for a double-shell

enclosure like the CM is shown in Fig. 16.

FIG.16 EQUIVALENT ACOUSTICAL CIRCUIT FOR
DOUBLE SHELL-ENCLOSED VOLUME

The relation between P17 (the pressure in the interspace
volume 11) and Pyo (the pressure in the interior volume 12),

as obtalned from Fig. 16, is

1/C C
= 12 _ 4..9
P12 = P11 I76, o+ I/C; P11 O, + Oy g (63)

By definition, the noise reduction NRi of the inner shell is

NR = 20 log pll/blz = 20 log [ 1+ g—— ] (64)

Ci2
40 09
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The complliance Cu 9 is the sum of the compliances of the
sections of the inner shell,

Cu.‘9=04+05+ ..o+09 (65)

The previous calculations show that this sum is dominated by
the compliance of the ledge-hatch cover combination Cu 6° Ir
>

we assume that this combinatlon is a gimply supported plate,
we obtain

Cu..é ~ 4 x 103 cu in./psi (66)

from Egs. (9), (12), (13) and (15). If we take a value of

3 x lO5 cu in., for the free volume 12, as suggested earller,
then we find the noise reduction of the inner shell to be

n
NR=2Olog[l+1—’5—x—lg—]=ll.7dB (67)

1 4 x 10

From the symmetry of the circuit shown in Fig. 16, it is clear
that the relation between Pg and Pyq is similar to that between

Piq and Pio- Thus, the overall pressure ratio
20 log po/p12 = 20 log po/'pll + 20 log pll/'p12 (68)

may be evaluated with the aid of
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20 log p_/Py; = 20 1;8 [ 1+ g??g ]
where
Ceq = C11 * CZ%:;9+Céi2  (69)
= Cyq + Cp(1 + /0y 907
and '
Gy 5= 0Cp + Cp + C3 = 3.34 x 102 cu in./psi (70)

If the interspace volume 11 is sufficiently filled with

porous material so that 1ts pressure fluctuations are isothermal,
then its compliance is given by Eq. (47), and

Ceq

(2 x 10%) + (1.5 x 10%)(38.5)7" 7

5 (71)

=~ 2 X lO4 cu in./psi

The noise reduction NRO of the outer shell therefore is

NR, = 20 log po/'pll = 20 log (1 + 011/01’3)

20 log [1 + (2 x 104)/(3.34 x 109)] ¢ (72)

= 40 4B
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Adding the NR provided by the inner and outer shells gilves

NRtot = 11.7 + 40 = 51.7 dB

Discussion and Conclusions

In the preceding sections, we have developed an estimate of
the NR provided by the Apollo Command Module at low frequencies,
in the absence of any structural or acoustical resonances. We
conclude that the inner shell is relatively compllant, due to the
flat ledge and flat hatch cover sections. It provides only about
10 @B of NR. The outer shell, however, is fairly effectlve,
since its uniform conical construction is relatively non-compliant.
It provides approximately 40 dB of NR. If the inner shell were
of a similar shape, we might expect the CM to supply NR of the
order of 80 dB at low frequencies instead of the 50 dB estimated
for the present design.

The foregolng conclusions would not hold if acoustical and
structural resonances should occur. Chapter VI wlill describe some
experiments on a model of the upper portion of the inner shell
hatch structure, which indicate that the forced '"quasi-static"
compliance model is appropriate to portions of the structure.
Nevertheless, calculations of the effect of structural stiffeners
on low-frequency NR indicate that volume-pumping modes of the
shells may be a problem.
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CHAPTER IV

EFFECT OF STRUCTURAL RESONANCE
ON THE NOISE REDUCTION

INTRODUCTION

In the previous chapter we saw that it is possible to
achleve relatively large values of low-frequency NR with
axisymmetric structural shells. This occurs particularly
when the shell responses are quasi-static, and when the
corresponding acoustic compliances are membrane-controlled.

Uninterrupted, axisymmetric shells may have low-frequency

resonances that are non-volume-displaclng. Such resonances

do not affect NR. However, if there 1s a structural discon-
tinuity, such as a reinforcing longeron or a cutout for a
hatch, then the low-frequency resonating modes may become
volume-displacing and reduce NR. In this chapter we develop
estimates of the sound transmission of the shell when such
volume-displacing resonances exist. We shall i1illustrate the
general results by applylng them to the case of a simply
supported cylindrical shell that has a single rigid longeron.

.GENERAL THEORY

We are interested in the sound transmission into the
volume contained by a closed shell at frequencies below
acoustic resonances of the contalilned volume. The situation
is that described in earlier work for the "intermediate-
frequency region." If the resonant structural modes are
volume-displacing, then they will have an appreclable coupling
to the external sound field, resulting in a structural modal
energy (Ref. 21)

2
Ms<v > eR nrad

0 = = (73)
m "~ ng Ao Mg *+ Mpag

Here, <v2> is the square of the "kinetic velocity" of the
resonator, n, 1s the shell modal density, and 6z 1s the modal
energy of thé sound fleld, given by
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<> v
R = —— (74)
pe nplw

Also, <p2> 1s the mean-square pressure of the external sound
field in a frequency band Aw which includes the resonance
frequency of the structural modes, p and ¢ are the density
and sound speed of the acoustic medium, and

nR = ;5—3' (75)

c

is the modal density of the exterior acoustic space, whose
volume 1s Ve.

The radiation loss factor 7 d will depend on the volume
velocity U of the shell mode. Tha’structural loss factor n
is usually assumed large compared with 7 . No reliable
prediction methods exist for this paramef%g.

The radlated power from a simple source of volume veloclty
U can be readily computed (Ref. 22). It is given by

2
_ kpec 2 _ 2
L _Eg— Um = <v> o Mg Mg (76)

where k denotes the acoustic wavenumber at frequency w, and
M_ represents the structural mass. The pressure fluctuation
ig the air volume within the shell 1s also related to U, as

D> = 12 /Pl (77)

where Cs = Vs/pc2 is the acoustlic compllance of the contained

volume V, within the shell. Combining Egs. (73) through (77),
we get
<p2> on? 05 A n2

1 = P L rad v (78)

<p§> w5 Vg K Cg Mg ¥ Mrag s
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where v_ is the ratio of the modal density of the vibrating
shell ssgment to that of a flat plate of the same area, and
where we have introduced the expression for flat plate modal
density given in Ref. 23. The radius of gyration of the shell
cross section is x and the longitudinal wave speed in its
materlial is Cge

I1f the shell is divided into N sections, then

<p§> = §E<pf>3 (incoherent sections) (79)
J=1

where the structural parameters in (78) must be evaluated for
each section, and we have assumed that the volume-pumping from
each section 1s incoherent with that of others. At low fre-
quencies, however, 1t is likely that the shell segments will be
excited in phase. If this is the case, the total volume veloclty

willl be
U = i UJ (80)

J=1

and the mean-square internal pressure will be

op - (L) > @
5=1

where pij) = UJ/m Cs .

APPLICATION TO A CYLINDRICAL SHELL

Let us imagline that the shell in question 1s the right
circular cylinder with rigid end caps shown in Filg. 17. It has
a single longeron, which we model as a simply supported 1line.
The flexural mode shapes for such a shell are of the form

nx,; mrX,,
¥ = sin 5= sin —= ; n,m integers (82)
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The ratio of the modal density of this shell to that of a
flat plate of the same area has been derived by Manning
(Ref. 24), and is given in Fig. 18 (for groups of modes
averaged over 1/3-octave bands).

The modes for which n and m are odd willl cause volume-
pumping. They make up one-fourth of all the modes of the
cylinder. The average radlation loss factor for this set of
modes for a panel has been found by Maidanik to be (Ref. 25):

2 pc P Ao
Mprag = & 1/2 (3)
T Ms(w wc)

where Ms 1s the panel mass, P 1s its perimeter, W, = ce/ch is
the acoustic critical frequency of the panel, and x = 2Wc/mc
18 the acoustic wavelength at the critical frequency. From

(83) then,
2
A B O @

where pp i1s the density of the panel material and H 1s defined
so that ppH 1s the surface density of the panel.

Our c¢ylindrical shell is divided into a single section, with

Ap = 2mal
2
Vs e L (85)
P = 2(4+2mra)
(x/H)2 = 1/12 )

Placing (83) through (85) in (78), we get
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NR = -10 log <pf>/kp2>

10 1og(3m? (£%a343/c®) (pp/p)z(c/cj)2 (1+¢/2ma) ™ ]

(86)
+ 10 log Mg -10 log Vg

where we have assumed Mg >> Npag® If we also assume that Ng

is frequency-independent, then, referring to Fig. 18 for the
frequency-dependence of vs’ we see that the NR willl rise at a

rate of 65 dB/decade as the frequency 1s increased in the
frequency range for which resonant volume-pumpling modes occur.

For a particular model, an experimental stgdy of which
will be described in Chapter VI, pp = 2.7 gn/em>, 2a = £ = 18 cm,
and H = 1.25 x 102 cm. For these“values,

2

NR = 60 log 10 °f + 10 log ng - 10 log v, + 31 (87)

A curve showling the NR of thils model c¢ylinder 1s shown in
Fig. 19, based on an assumed value of f_, = 107, Also
indicated on the same graph are the preﬁicted and measured
membrane NR's for this cylinder.

The result of Eq. (86) is valid for the frequency range
where structural resonances occur, l.e., above the fundamental
structural resonance frequency. For a flat plate, the funda-
mental resonance 1is relatively simple to estimate for a wide
variety of boundary conditions (Ref, 26). For a cylinder,
however, the calculation is somewhat more involved. We can
use formulas developed by Heckl (Ref. 27) to derive an
estimate of this frequency for supported cylinders.

Heckl's formula for the ratio of modal resonance frequency fm

to ring frequency f (at which the fundamental "breathing
mode" occurs) for shsBe cylinders is (Ref. 28)

2
(Sn/ong)® = 193 &5 + 2(om®)”  (88)

where v 1s Polsson's ratio, m is the clrcumferential mode number,

0 is the axial wave number nma/f, and B =~kK/a. If we minimize
(88) by differentiating with respect to m, the result is
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(f1/frangdmin =V2P 0 =V2K/2 T (89)

where the smallest value of o has been taken, corresponding to
n=1, -

It is interesting to compare the lowest structural résonance
frequency with the lowest acoustical resonance frequency fgqs

e ma . S0 20 [E S
fmin/fa “\/a ~ 7 ~ Zra c a ¢ (90)

For the cylinder in our example,

fran/fq = O-47 (91).

Since the lowest acoustlc resonance frequency 1s

y

fa=%=3—£%36{-10—=960}12 (92)

the lowest structural resonance is 450 Hz.

We note, from Fig. 19, that the resonant contribution to
sound transmission is exceeded by the compliant (nonresonant)
contribution at frequencles above 300 Hz. We would not expect,
therefore, to see the effect of structural resonance on the NR
of this cylinder. The data presented in Chapter VI indlcates
that this is the case.

DISCUSSION AND CONCLUSIONS

In the frequency reglion below the first acoustic resonance,
the upper bound on the NR is the quasistatic membrane compliance
prediction. For frequencies within an octave above the funda-
mental resonance frequency of the cylinder, however, structural
discontinuities may cause large reductions in NR relative to this
upper bound, if theilr compliance is very large.
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A good design rule of thumb for reinforced shell structures
might be to avold panel resonances that occur less than an octave
below the resonances of the contained air space. Use of this
rule should result in the probable retention of the quasi~static
NR at least up to the first acoustic resonance.

Experimental data on the effects of structural resonance
on the vibration and NR of c¢ylindrical and conical shells are
.presented in Chapter VI,
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CHAPTER V

INTRODUCTION

We have defined "low frequencies" in the context of this
report as frequencles below the flrst acoustlc resonance of the
receiving space, For the Apollo CM, thls resonance occurs at
approximately 50 Hz. Even in this low-frequency range, however,
there may occur acoustic resonances which are associated with

the interspace volume.

Such low-frequency resonances may occur as the result of an
interaction between the interspace volume and an alr vent
connecting this volume to the CM exterlor. A resonance may be -
assoclated with the acoustic mass of the vent actlng in con-
Junction with the compllance of the interspace., The effect on
the system NR of such resonances and of related resonances are
studied in the present chapter.

Since the entire CM 1s axisymmetric, aside from perturbing
effects of equipments, the lnterspace between the shells shares
this symmetry. The shortest distance measured within the inter-
space between the two poles of symmetry of thls space is long
enough to permit an acoustic resonance to occur at a relatively
low frequency. The acoustlics of the interspace resonances and
the potential effects of such resonances on the low-frequency
NR are also treated explicitly in this chapter. Experimental
studies of these resonances are described 1n Chapter VI.

EFFECTS OF AN ATR VENT ON CM MODEL NOISE REDUCTION
Alr Vent Resonance

The interspace between the inner and outer shells of the
Apollo command module 1s vented to the exterlor via a tube which
connects the interspace with the service module interior. At very
low frequenciles such venting will allow the pressure fluctuations
on the exterior of the vehicle to be directly applied to the
internal shell (neglecting any NR of the service module). This
venting reduces the NR markedly, since 1t is the outer conical
shell. of the CM that supplies most of the nolse reductlon at these
low frequencies. It is therefore of considerable interest to
discover the range of frequencies over which the exterior shell
will be effectively acoustically "short-circuilted” by the vent.
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If the disslpation in the tube 1s small enough, then there
also exists the possibllity of a Helmholtz resonance involving
the acoustic mass of the air vent and the acoustic compliance of
the interspace volume. Such a resonance will lead to pressure
amplification within the iInterspace and an increase in the noise
in the CM.

One may also expect to find an antiresonance at a higher
frequency, lnvolving the alr vent acoustic mass and the acoustic
compliance of the outer shell, Near the antiresonance frequency
the noise reduction will be Increased, since volume-pumping by
the outer shell will be almost exactly balanced by the reversed-
phase volume-pumping in the air vent.

In this section we shall examlne the effect of the air
vent on the low-frequency noise reductlon, We shall here limit
our dlscussion to a study of the probable range of resonant
frequencies for such effects on Apollo-like structures. Calcu-
latlons for other structures may be carried out on the basis of
the methods given here,

Estimate of Resonance Frequencies for CM Model

' The frequency of the resonance between an acoustic mass
M and a compllance C 1s glven by

£, = %? (Mc)~/2 (93)

In terms of the volume of the alr space V, the ambient density
ps and the sound speed, the compliance of the air space 1s glven

by
2
C=V/pec (94)

or by eq. (7),which 1s equivalent.
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The acoustic mass of air contalned in a tube of cross-
sectional area A and length £ is (Ref. 29)

M=p £/A (95)

Placing (94) and (95) into (93) results in
A \1/2
£, = % (3)" (56)

In Chapter III we noted that a reasonable value for the

interspace volume 1is 3 x 105 cu In, Let us assume that the
vent has a cross-sectional area of 1 sq in. and a length of
20 in., Then the resonance frequency 1s approximately

£, = 0.9 Hz (97)

The compliance of the interspace volume, assuming

adiabatic fluctuations, 1s approximately 1.5 x 104 cu in./psi.
The compliance of the outer shell,which was given in Eq. (60),

is approximately 1.5 x 10° cu in./psi. According to Eq. (93),
the ratlo of resonance frequencles is 1nversely proportlonal
to the square root of the compliance ratio., This means that
the antiresonance between the alir vent and the shell is

approximately ten times higher 1in frequency than the resonance:

£, =9 Hz (98)
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Effect of Resonances on Structural NR

A schematic dlagram of the system discussed here 1is
shown in Fig. 20, The air vent is shown as a small tube,

 the interspace volume is Vl, and the volume contained within

the inner shell 1s V2. The inner and outer shells are
designated as S1 and 82, respectively.

FIG. 20 "DOUBLE WALL" HELMHOLTZ RESONATOR

The electrical equivalent circult by means of which one
may study the pressure transmlssion of this system is shown
in Fig. 21. This circult is a modification of Fig. 16. If
M, is infinite (obtained by A+ 0), the system is reduced to

one with no vent. The presence of the acoustlc mass of the
vent 1s found to give rise to resonances and antiresonances,
and to result in a nolse reduction curve like that shown in
Fig. 22, The noise reduction for f > fa approaches the value

computed for a system with no vent. The noise reduction in the
decade between fr and fa changes rapidly from a very low to a

very high value, and very little noise reduction 1s obtained for
frequencies below fr‘
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Clearly, it 1s desirable to keep fr and fa as low as

possible s0 that the nolse-reducing quallties of the outer
shell frequencles at which appreciable acoustic excitation

1s present, It 1s not practical to reduce these frequencies
by increasing the compliance of the outer shell, since such
an increase reduces the asymptotic (higher frequency) noise
reduction. Therefore the acoustic mass of the alr vent should
be kept as high as possible; that 1s, the opening should be
kept as constricted as possible.

ACOUSTICS OF SPACES BETWEEN AXISYMMETRIC SHELLS

The acoustic resonances of a fluid contained between two
axisymmetric rigid shells can be derived exactly for a few
simple shapes. Generally, however, the shapes will be so
complicated that an exact treatment of the basic differentlal
equations and theilr solutions will not be possible, In this
section we describe how an acoustic equation for the space can
be derlived and solved by some approximate methods.

Derivation of the Wave Equation

Let us consider the fluid contalned between two axi-
symmetric shells A and B, as shown in Fig. 23, The shape of
this interspace or coupling volume is defined by the shape of
the median surface I' that is equidistant from A and B, and by
the distance between A and B at any position on this surface.
Positions on I' have coordinates (¢,s) where ¢ is the azimuthal
angle and s 1s a lineal dimension along a line of constant ¢.
We take 8 = O on the lower "pole" of ' and s = S at the upper
pole, The distance from any position on I' to the polar axis
1s r(s) and the distance between A and B along a line perpen-
dicular to I' is w(s).

The major simplifying assumption made, aside from
linearity, is that the acoustic field variables are constant
along lines perpendicular to I'. This restricts us to that
frequency range where the acoustlc wavelength 1s long compared
with the greatest value of w(s).

To construct an equation of motion, we conslder a.sectlon
of the volume bounded by A and B and by the surfaces s = const,
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S + As = const, ¢ = const, and ¢ + A9 = const. This volume
element 1s sketched in Fig. 24. We next write down the mass
conservation equation, the force equation, and the state-energy
relation. Effects of viscosity and thermal conductlon in the

gas and at the boundaries will be ignored.

Continulty Equation (Consérvation of Mass). - If the flow
velocIty is resolved Into components ug and Uy parallel to the

unit vectors gs and 6¢, and the fluid density 1is p, then the
rate of mass addition to V is

o] u¢A¢ + pusAS

and the rate of mass loss 1s

p u;A + pu_A
79 |¢ + 0D Pugig

8 + A8

The difference between rates of mass additlion and loss
results in a rate of change of mass contained in AT:

+ puSAS . - pusAs

2 (
p AV) = pu A I - pu
ot ¢7¢ ¢ ¢ 8 + As

A
¢|¢ + A

Approximating the dilfferences by partial derivatives gives

As AP TW %% = - As A¢ %$(pu¢w) - As Aplgg(pusrw)
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which can be rewritten

%% + pov.3+ Polg gE Mmrw=0 (99)

In deriving (99) we have taken p = p_, the ambient density, when

it multiplies a fluctuating varlable, since we consider linear
terms only.

Force Equation (Conservation of Momentum).- The fluid element
contained in AT 1s accelerated by a net force actin% on it.
p)

change 1n pressure along s results in a force p(s)A in the +s

direction where p(s) is the pressure at s and Aép) is the projected
area of the volume element 1n a plane perpendlcular to SS.

Similarly, the force in the -s direction 1s p(s + As) Aép). The

net force in the s direction and the resulting acceleration of
the volume element obey.

(p) 3 _d |
-Ag 5% as = S (pughr)
The corresponding equation for the ¢ component of acceleration is
=) o)
-Aép) A9 = 3¢ (pu¢AT)

Combining these ,and linearizing (using Agp) = A and Aép) = A¢),
glives

Po g—g+§7p 0 (100)

Energy-State Equation. - When viscoslty and thermal conduction
effects can be ignored, then relations for the equation of state of
a gas and conservation of energy result in
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[ 3

vP
%% =2 = 2 | (101)

where 7Y denotes the ratio of specific heats and ¢ the velocity
of sound. -

We combine (99), (100) and (101) to obtain the desired
equation,.
Wave Equation.- The wave equation is found by eliminating

¢ and u. We do this by operating on (9?) with 9/9t and on (100)
with V, then subtracting (100) from (99) to obtain

32 Sug 3 2
at fpo—s—t--a-gznrw-Vp-O

We then use (101) and the s-component of (100) to get

2
i-?%;g-gg%g(gn rw) - V% = 0 (102)

This is the desired equation., It 1s very similar in form to the
traditional "Webster horn, equation," as we shall see,

Comparison with Horn Equatilon

Consider a slender horn of circular cross sectlon specified
by r(x) (see Fig. 25). With the assumption that the maximum
value of r(x) is small compared with the wavelength, we can
derive the traditlonal Webster's horn equation. Coéntinulty, force
and energy state equations are stated below.

Continuity Equation (Conservation of Mass)

%% + Py v.d + P oy %g-[zn s(x)] =0 (103)
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Force Equation (Conservation of Momentum)

>

Po %% +Vp =0 (104)
Energy-State Equation
YP
d P __o = 2
a% = = c (105)

[ _
r(x)
AXIS OF ,/_ _ - > X

SYMMETRY

FIG. 25 SLENDER HORN OF CIRCULAR CROSS SECTION
SPECIFIED BY r(x)

These results are based on the same premises as in the derivation
the pressure

of the generalized differential equation governing
within the interspace between axisymmetric shells. Using (103),
(104),and (105), we get Webster's horn equation:

25 =0 (106)

1 d°p op a4
-;-Eg—t%—ggaiﬂn S(X) -V
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Assuming eim¢ and e"iwt dependence, this equation becomes:
2 2 '
o) op d 2 m
+ £n S(x) + [ k< - ] Pp=0 10
F+ R 220 (107)

The interspace counterpart 1is:

n

d dp d 2 m
+ 3 & pnu(s) o(o)1 + [ (® -m>]p=o(me)

o/

S

Even though these equations are identical in form, with S(x)
corresponding to w(s)r(s), there 1is an essential difference

which should be notliced, Whereas the assumptlon governling the
Webster equation is that the maximum value of r(x% (=Vs(x)/m) is
small compared with the wavelength, the 1nterspace equation 1s only
restricted in that w(s) is small compared with the wavelength.

The product w(s)r(s) may be large. Thus, 1t appears that the

range of validity of the interspace equation 1s greater than that
of the Webster equatlon,

Extenslve work on the Webster horn equation has been done
by Salmon (Ref. 30). For the m = O case, Salmon found a solution
for horns characterlized by:

r(x)=ro[cosh(%>+Tsinh(%>] (109)

where r_ 1s the initial radius, H is a "flare" factor, and
T 1s the shape factor which varies from zero to infinity.
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T = ¢ Conilcal Horn
T = 1: Exponential Horn
T = G: Catenoidal Horn

Salmon's solutlion to the Webster equation is:

%e(ﬁx - ct) - %ﬁ(ﬁx - ct)

p = E'%—J_{T [ P_e + Pge ] (110)

B z\/ - (ucTﬁ )2 (111)

For particular shape factors and for m # O, Webster's horn equation
can be solved., These willl not be enumerated here.

where

A difficulty in the analysis of interspace acoustics lies in
the fact that most problems considered are not analytically solvabl:
It 1s useful, therefore, to establish an approximate method for
analyzing the acoustic properties, and the acoustlic resonant
frequencies in particular, of axisymmetrlic enclosures. The valldit:
of the approximation method can be verifled, in part, by comparison
with results obtained from an analytical study of simple horn
shapes.

The Rayleigh-Ritz Method

An approximation technique useful for finding resonant
frequencies 1s the Rayleigh~Ritz method. This method 1is based on
Rayleigh's principle, which states that "in the fundamental mode
of vibration of an elastic system, the dilistribution of kinetic
and potential enerﬁies 1s such as to make the frequency a minimum
(Ref. 31). Since "the frequency of vibration varies as the square
root of the ratio of stiffness to inertlia, any constraint applied
to a system will increase the frequency" (Ref. 30). Thus, "if
we consider any constrained mode of vibration and calculate its
mean potential and kinetic energies, the result of equating them
will yield the frequency of this constrained mode, which is
necessarily not less than the frequency of free vibrations" (Ref.
30). This energy method, therefore, yields an upper limit to the
natural frequency of vibration., The accuracy of the method is
based on the fact that first-order changes in energy produce only
second-order changes in frequency. In the language of the calculus
of varlations, the first-order variation of energy with respect to
frequency 1s zero.
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Illustration of Rayleigh-Ritz Approximatlion Method

A simple example will prove to be both an illustration and
verification of the Rayleigh principle. Congider an exponential
iorn for m = 0, specified as in Fig. 26. We shall first solve for
the resonances analytically.

Analytical Treatment.—The solution of the Webster's differential

cquation can be written

p(x) = e~*/H [ P, e~1Pkx P e+l Pkx ] (112)

where
1/2
l .
t3:-=.<1-—-2-—2> (113)
H"k
Applying the two boundary conditions:
d - 9p =
a§| - dxl =0
x =0 xX=4
we get:
2, 2 2,2
cos [ 4“ Hk -1 ] =1, or Hk -1 _ ong
H H
2
Solving for kn:
(114)

2 o ( nr )2, 1
n 2 E?

which specifies the resonances.

Rayleigh Approximation.- We must first pick a shape func-
tion representing a constrained mode of vibration. Our first
attempt at finding thils shape function might be a third-order
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polynomial weighted by e'x/H, i.e.

¥ o= e-x/H (ax3 + bx° + cx + 4) (115)

where the pressure is given by p = AV. With.the boundary conditions:

%%I = %%I = 0, and p(x)l =1, p(x)| = (-1) o~4/H
x=0 x=4 0

the shape function becomes
- 3
v = e ¥H <_§? - g x? 4 1 > (116)

We must now find the mean kinetic and potential energiles. The
incremental energies can be written:

2
AT = incremental kinetic energy =-% p|u| AT

(117)

2
AV = 1ncremental potential energy = —E—Q'AT
2pc

where

At (incremental volume) = S(x) Ax = wrz(x) AX = veax/H Ax
(118)

From the force equation:
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Therefore, the mean energies can be written:

L o2
T=%T=%JdT=%I%plu|2S(x)dx=z—:‘;§6/ (g%) e 2%/ Hyy

(120)

2 '/
V=%V=%de=-]§f%—L-§c S(x)d.x:——zh'"- | 07 B/ Hgx (121)

0 0 po poc 0

2
We must now find (§£> and p2. After some simple steps we have:

@ [ &G+ o+ [30 3 (e TN oeyy]d

+ [--ﬁ <} + %>+9] x2 + g X + ;%]e-ex/H (122)
and
2 _ (%? --% X0 + %-xu = x3 - 3x° + %) e~ 2/H (123)

According to Rayleigh's princlple, we can equate the average
potentlal and kinetic energles and solve for the frequency. This

yields:
2 (3 \° 2x
2 ‘[ <5§> /% ax
K2 -8 . (124)
¢ 2 _2x/H
JF p- e dx
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If we take g = 2, as an example, then
. 5
2 _[32__16 1 3,9 1)° 32 1_9< %D
0.97 k -[%r;_H<1+H>+[H+E(1+}D]%-+4[? 1+ 5)]
+8<'%I(1+%'1)"‘3>"'%{2+%2] : (125)

We can now compare both methods:

Approx. Rayleigh Exact Analytical
k2 - w?/cg k2 = w?/cz
H- 2. 474 2.467
He10 2,484 2,477

?

Note that, 1f we had guessed a shape functien, ¥ = cos %5 e"x/H

we would have obtained the exact analytic results, as expected,
since we would have picked the exact mode shape of free vibra-
tions., Note also that the exact results are lower than the
approximate results. Theory suggests that thils 1s a general
result.

We are led to belleve, therefore, that the Rayleigh
approximation method appllies with sufficient accuracy to horns
as well as spaces between two axlisymmetric shells, if mode shape
functions are carefully chosen.

Ritz's Contribution

Now let us 1ndicate Ritz's contribution to the Rayleigh-
Ritz method. To improve the accuracy of the estimation, a
second term 1s often added to the shape function as a way of .
better approximating the mode shape of free vibrations. That
i1s, we use
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V=¥, +aig (126)

where 11 also satisfies the boundary conditions., We then proceed
as before, now solving for k = %)- = 9—‘9-)—. We desire that value of

the parameter a for which the variation of @ with respect to a is
a minimum, that 1s, the value s that satisfles

(127)

8l

Having optimized our solution, we then obtain w = w(ao). With

this method, the exact solution 1s presumed to be approximated
more exactly.

Application to Apollo CM Acoustic Model

The acoustic model of the Apollo CM 1s shown again in Fig. 27
The first task in analyzing the natural resonances of the interspac
is to establish the boundary conditions on the pressure, The
boundary condltlons are applied at the poles of symmetry: s =0
and s = S. At these positions the geometry is similar to that of
a disc or pill box, Fig. 28. 'he pressure field for a space
having this shape is proportional to J (kr) cos mé,

Te functional behavior of the field will be:

0; J(0) = 1; behaves as a (cosine) for long
wavelength. (128a)

m = 0; ggacr)l
r=0

0; behaves as a (sin) for long
wavelength. (128b)

=
]

1; gg.«kr)l # 05 3(0)
r=0

}
O
We

J(0) = 0; behaves as (1l-cos) for long

m> 1; %%(kr)
=0 wavelength. (128¢)
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FI1G.27 ACOUSTIC MODEL OF APOLLO COMMAND MODULE
SHELL. MEDIAN COORDINATE s. w(s) EVERYWHERE
PERPENDICULAR TO s. r(s), POLAR COORDINATE,
DRAWN TO CENTER OF wi(s)
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mese conditions are to be met both at 8 = 0 and at s = S. This
suggests the following shape functions:

m=0; ¥V = cos E%E (129a)
m=1; ¥ = sin <.9%§-> cos mp (129p)
m>1l; ¥ = [ l-cos 2215 ] cos mp (129¢)

Consldering ¢ dependence also, we have for the particle velocilty:

2| = a5 58] (130)
2| = morrar/SE] (131)

The incremental kinetic energy can now be written:

2 2 2 2
vt = Solul” a7 = Bo(lug) + Iu,l°) ar =Zi"w’=‘[@9‘> - )" o
(132)
where (see Fig. 24)

At = w(s) r(s) As Ad

A(s) As A (133)

and (see Fig. 29)

A(s) = w(s) r(s)
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At 1s the same as in previous dilscussion., Therefore, equating
mean potential and kinetic energles, we get:

» var.f [(%%)2]A(S)dsd¢ +f21rf§ ;2}(:)-@%2 A(s)dsd¢
k® = (gD -2 T8 S
Jf Jr p2 A(s)dsde
o o

(134)

Let us now investigate the product w(s) r(s) = A(s). 1In
Fig. 29 we have plotted A(s) vs s. We can see that, to a very
good approximation, A(s) can be represented as seven linear
segments, ¢, s + d,. (The values of the variables s, r(s),

w(s), A(s), Cys and dJ are tabulated in Table II.) This linear
property suggests that lntegrals that we encounter such as

[ s1n¥(228) )
fs < > A(s) ds (135)
© cosw(E%E)

\ /

be written as:
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TABLE II

VALUES OF VARIABLES USED IN CALCULATIONS

ASsg = — 1/2
] r(s) w(s) w(s)r(s) c d [r (s )]
J J J
inches |[inches | inches | sq.inches| slope | intercept | sq.1inches
0 0 1 0
1.46 0 not used
60.0 58.2 1.5 87.3
112.8 -6681.3 62.1
71.2 65.9 20.5 | 1350.95
-53. 14 3
b8 | 61.6 | 1.5 | ogp.n0 [P =
-.8 168.5 49
141.6 36.8 1.5 55.20
27. -38 29.4
157.6 22.0 22.5 495,00 L5 3239 =
-18.7 3440.8 19.2
183.2 16.4 1.0 16.40
-.80 164,7 9
203.6 0 24.5 0
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o

7 Sy41 |sin® __n'gs
Z ‘l (ch + dJ) ds (136)
J=1 J cos® E%E
- where w can be 1, 2, 3, 4, ---. Such integrals may be
| handled analytically and summed as indicated.
m=Q, - For the m = O case
¥ = cos EgE
(137)
p = Ay = A cos 2%5 (138a)
%g = - A %g sin ngs (138pb)
%‘% =0 (138¢)
This ylelds:
2 3 7 s
nﬂ) sin® (ﬁIﬁ) A(s)ds -—E sin2<égi>(c s+d,)ds
5 _ S S S S J J
K- = ‘/5 == 55
2 (nws 2 (hws)
cos® (—g— A(s)ds Zf os® (=g~ (ch+dJ)ds

J=1 8
(139)
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'The valueasd of ¢, and d, are taken from Table II.

J J
- mzs: 1. - For the m = 1 case
¥ = sin % cos m¢ (140a)
p = AY = A sin n_'rsr§ cos m¢ (140D)
%g = A %’—r cos E’S"E cos m¢ . (140c)
%% = - mA sin (B%E sin m¢ (1404)

This yields:

am
f fscose (_rg_sr._s_) cos® m¢ A(s)dsdo
0

2r S
f f sin® (%—S) sin? m¢ A(s)dsde
0 0

f f nws) sin® mé A(s) dsd¢
T (s) (141)
or .S
f 6[ (mrs) sin® m¢ A(s) dsd¢
0
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These integrals gan be handled as before except for the one
containing the r<(s) in the denominator., Since A(s)= r(s)w(s)
and r(s) * s for 8 = 0 =60 in. and w(s) = 1 in. for

s = 0—> 60 in., we can write this integral as:

or 60 s
me‘/ﬂ sin2 m¢ d¢'[d[ sinzg 5] ) as
0 0 S '

7 Sy+1
1
+ }: ;ﬁﬂ;;‘; \/J sin? <?g§ (ch+dJ)ds] (142)
y=2 J 8y

- 1/2
We replace r(s) in Eq. (141) by its rms value [r2(s )]

It is then removed from the second integral since J

its variation 1s relatively slow. Thilis rms radius 1s also
tabulated in Table II. The solution of the first integral
is an infinlite sum, the first several terms of which yleld
the required accuracy.

m> 1.- For the m > 1 case

¥ = (1 - cos 2%?8) cos mp = 2 sin® (E%E) cos m¢
(143a)
p = Ay = 2A sin® (E%E) cos m$ (143p)
%g = g%E A sin 22rs cos m¢ (143c)
%% A 11 2nws .
= - - cos (=5—)|sin mé (143a)
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This ylelds:

or S

n'tr2 2 ,nws 2

(-§-) ff sin (T) cos® m¢ A(s‘dsd¢
00

2
k™ = 2T 9
4 J[ Jrsin4 (E%E) cos? m¢ A(s)dsdeo
O O
or S
L Jf JF sinu (2%5) cos® mé A(s)
dsd¢
°(s)
+ 2w Os - (144)
L JF Jf sin4 (E%E) cos® m¢ A(s)dsd¢
0 0

These integrals are handled 1in a similar manner to those
previously discussed.

Ritz Modiflcation

The Ritz modification, as discussed above, is straight-
forward. Reviewing, the mode-shape function 1s represented
by a linear sum:

¥(s,9) = { wo(s) + a wl(s)] cos mo (145)

where a 1s a parameter to be optimized. A procedure for
picking wl(s) that satisfies the boundary conditions is to write

v (s) = v (2s) | (146)
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This constitutes, in effect, the addition of a second spatial

harmonic term. The shape functlons become:

m=0 v = Fcos (E%E) + a cos (§%g§)

L

J

r -

m=1 % = Lsin (E%E) + o sin (2nvs)'
J

3 cos ¢

-
m>1l ¥ = L(1 - cos 2gvs) + a (1 - cos 42#5

After integration, the result 1is in the form

2 A+ Ba + Ca®

kK< =
D + Ea + Fdé

(1472)

(147v)

cos mo

(147c)

(148)

We take the derivative, d(ke)/da, and set it equal to zero. This
allows us to solve for two values of a. The value of a that
reduces the frequency from the a = O case is chosen as the

proper coefficlient of the second harmonic term. Preliminary
results for a = O (Rayleigh) and a # O (Rayleigh-Ritz) are

recorded in Tables III, IV, and V.

Conclusions

According to the results in Tables III, IV, and V, 1t
is evident that, for the n = 1; m = 0,1 modes, the resonant
frequencies are below 50 Hz. The possibility of sound trans-
mission into the inner shell of the Apollo CM model 1s dependent
upon whether this resonance condition 1s accompanled by a signi-
ficant volume displacement. A measure of this volume displace-
ment 1s obtalned from mean pressure calculations which were
carried out form = O; n = 1,2,3., The assumed mode shape is,

as before:

p = Ay = A (cos Egﬁ + a cos 22?5)
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TABLE III

RESONANT FREQUENCIES FOR m=0

ASSUMED MODE SHAPE: V¥ = cos 9§§-+ a cos aﬂgi

o f Hz a f Hz a f Hz
0 50.4 0 83.4 o) 5.5
-0.361 40.5 0.234 75.8 -0.059 80.9

TABLE IV

RESONANT FREQUENCIES FOR m=1

ASSUMED MODE SHAPE: v <§1n 2%5 + a sin 2EE§)cos me

S

n=1 n=2 n =3
a f Hz a £ Hz a f Hz
0 54.8 0 87.6 0 146.1
0.476 43,2 -0.422 78.9 0.350 131.4




?v/

¥

TABLE V

RESONANT FREQUENCIES FOR m > 1

ASSUMED MODE SHAPE

[(l-cos 22%§> + a<}-cos 42%5 J cos mo

n = 1

a f Hz
0 7.0

ms= 2
-0.3202 80.5
0 124.3

m=3
-0.388 106.1
0 162.7

m=14
-0.418 | 132.9
0 201.6

m=>5
-0.432 160.7
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Normalizing at the boundaries (setting A = 1) we get:

(n=1) (=2) (n=3)

PA(s)ds
P (Mean Pressure) = 3 = .,195 =-,435 -,413
f A(s)ds
0
Resonant Frequency (Hz) 40.5 75.8 80.9

When m = O, the pressure has a maximum value of -1.361 at

s = S. We see,therefore, that the mean pressure is about 15%

of the maximum pressure. For n = 2 and 3 the mean pressure 1s

over 30% of the maximum value. It should be realized that the

mean pressure 1s calculated for an approximate mode shape. The
percentage error in mean pressure calculations may be significantly
higher than in resonant frequency calculations. Nevertheless,
these calculations 1lndicate the possibility of potentlially undesir-~
able acoustic resonances of the interspace.

EFFECT OF INTERSPACE RESONANCE
ON NOISE REDUCTION OF THE COMMAND MODULE

In thls section we shall calculate the degree to which
the lowest axisymmetric resonant mode (m = O, n = 1) of the
CM interspace can be excited by a uniform acoustic pressure
applied to the CM exterior. We shall use the principle of
reciprocity in deriving an expression for the NR.

General Formulation of NR

The principle of reciprocity in acoustics states: if a
source of volume veloclty is placed at one posltion in a
passive acoustical system at rest and the resulting sound
pressure 1s measured by a receiver at some other position,
then the same pressure will be measured if the positions of
source and recelver are interchanged. Suppose we inject a
known volume velocity at a point in the interspace of the CM,
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at the resonance frequency of the m = 0, n = 1 mode of the
iInterspace, We then calculate the amplitude to which the mode is
exclted, and from 1t the deflection of the outer shell 1t pro-
duces, and then the pressure which results at a test point far
from the CM. Reclprocity tells us that thls same pressure will
be produced at the original source point in the interspace if

the volume veloclty source 1s placed at the test point far from
the CM. If we can then calculate the pressure produced just out-
side the CM, we shall know the noise reduction of the system.

At 8 = 0, we injec} 2 volume velocity er-iwt.

(Hereafter, we assume e time dependence for all acoustic
field variables. As a phase reference, we take Uy to be real.)
The frequency w 18 the resonance frequency of the lowest mode
of the interspace. The volume veloclity U, produces a pressure
in the interspace po¥(s), where ¥ is the dimensionless pressure
mode shape normalized so that ¥(0) = 1. The quantity P, 1s the
peak pressure produced at s = O,

We assume that we know the loss factor of the resonant
mode, The loss factor n 1s deflned as

n = average power dissipated (14
@ . maximum potential energy 149)

Since we are operating at resonance, the input lmpedance
seen by U is purely resistive, and therefore D, is real, The

average power disslpated, which 1s equal to the power supplled
by U s 1s thus P, U /2 We can now calculate the pressure

magnitude P, in terms of n and Uo.

The time-wlse maxlimum potentlial energy of the system is

(P.E.)pox =£2 f [p¥(s)]” A(s)as (150)

where 27 A(s) is the cross-sectional area of the interspace.

We can therefore write p, as

T (151)
21w f zpa(s)A(s)ds
o

Py =
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We now wish to find the volume velocity emitted by
the CM through the outer shell due to the source U,. Let us
call this volume velocity U;. We can write

U = - 1o jpotll(s)C(s)ds (152)
0

where C(s) 1s the acoustic compliance per unit length of the
outer shell, The integral in Eq. (152) i1s the volume displacement;
multiplication by -iw 1s equlvalent to taking the time derivative
and changes thils displacement to the corresponding velocity. The
quantity C(s) is to be calculated from the membrane eory for
rotationally symmetric shells developed in Chapter III, Here 1t
is assumed that the motion of the shell 1s stiffness-controlled;
i.e., that the resonance frequency of the interspace mode being
studled is well below any resonances of the outer shell, It is
also assumed in Eq. (152) that the pressure on the outside of

the outer shell due to radiation loading 1s negligible compared
with the modal pressure in the interspace.

Let us now consider a test point relatlvely far from the
CM, and assume that the frequency 1s low enough so that the CM
behaves like a simple source, The volume velocity Uo’ injected

at s = 0 1n the 1nterspace, produces a pressure Ps at the test
point., We can also consider Ps to be produced by the emission
of volume velocity U1 by the CM. According to the principle of
reciprocity, 1f we now inject Uo at the test point, a pressure
Py will result at s = 0, Furthermore, the pressure Just out-
side the CM will be related to Uo in the same way that P, was
related to U1 when the CM was radlatlng., Let us call this
pressure jJust external to the CM Py We have then

Uop2

P = Ul (153)

But the quantity we seek 1s the pressure in the CM 1n response
to a uniform exbernal pressure, or

U
2.1 . (154)
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If we substitute in Eq. (152) the value of p_ given by
Eq. (151) we obtain °

S
pe? [ w(s)c(s)as
0 Po

= BI (155)

o

.

S
2vq/‘ we(s)A(s)ds
0]

The pressure distribution in the 1nterspace, in response to
an externally applied pressure Py 1s then W(s)p2.

To achieve the best noise reduction we must minimlze
pg/pl. From Eq. (152) it 1s obvious that, all other factors

remaining constant, we must maximize ., One could lncrease 7
somewhat by Introducing damplng material into the Iinterspace.
(The lowest m 1s obtained if the only source of damping is
radiation from the CM.)

Numerical Calculation of NR at Interspace Resonance Frequency

In the preceding section we derived Eg. (155) for the
NR of the outer shell at the frequency of the fundamental reson-
ance of the interspace. In thils sectlion we shall evaluate thls NR
numerically.

In order to evaluate the integrals in (155), we must know
three functlons: 2mA(s), the cross-sectional area of the inter-
space; ¥(s), the dimensionless pressure mode~shape function;
and C(s), the distributed compliance per unit length of the
outer shell. The coordinate s 1s defined and functions A(s)
and ¥(s) are given earlier in this chapter. As 1in the preced-
ing section, we take ¥(s) to be normalized so that ¥(0) = 1.
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The small end and the base of the outer shell are essentially
spherical caps and can reasonably be expected to be substantially
stiffer than the conical sectlon. We shall therefore assume that
c(s) is zero, except for the conical section. This assumption
should not have an appreciable effect on the value of the integral
in the denominator of (155), since by using this assumption we are
neglecting only a small contribution to the integral.

The distributed compliance, c(s), is Just the ratio of
the change in area of the cross section of the shell (a circle
of radius r.; see Fig. 10) to the pressure producing the change.
To deduce 1%3 functlional form we shall assume that the applied
pressure varies slowly enough in space so that we may safely
take the membrane forces at a point on the shell to be the same
as those produced by a spatlally uniform pressure equal in magni-
tude to the pressure applied at that polnt. The applied pressure
willl produce a fractional change in the radius of the cross sec-
tion, r,, equal to the clrcumferential strain, €g. We then have

2
2
m < - wlr. (1 + & ] 2rr €
o(s) = —2 po e - - +6 (156)

where p 1s the appllied pressure and we have neglected the

quadratic term in the strain. From Egs. (28), (29), and (30)
of Chapter IITI we find €4 for a cone under a uniforn applied

pressure. Using these relations, the equation for C(s) becomes

2
2rr “(N, - VN,) _
o(s) = - —gf—8 L LB =T 2 3(s) (157)

With dimensions (in inches) taken from the Apollo CM, we have
_ 3
c(s) =212 =VY) (119 - 0.5 s) (158)
N3 EA

Using this expression for C(sL and the seven-segment linear
approximation to A(s) and the Ritz-modified mode-shape function
¥(s) taken from earlier sectlons of thils chapter, Eq. (155) is

found to give
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=1

_ 3 _
= 1.9 x 10° x £ (159)

If we take pc2 = 20 psi, vV=0.3, E= 3 x 107 psi, A = 0,016 in.
and 11 = 0.02, this beomes

Pa

By = 6.8 (160)

In other words, at the frequency of the fundamental interspace
resonance, the pressure in the interspace at s = 0 exceeds the
external acoustlc pressure fleld by .20 log10 6.8 = T74dB.

The NR of the inner shell 1s primarily determined by the
compliance of the "top hat" structure at the upper end, the most
compliant portion of the shell, Due to the form of the mode-
shape function, ¥(s), the average modal pressure in this region
is some 3 dB higher than the pressure at s = 0. In Chapter III
we calculated the NR of the inner shell to be about 12 dB.
Thus, we anticipate that at the Interspace resonance frequency
the NR within the inner shell will drop to 12-17-3 = -8dB.

This result 1s perhaps unduly pessimistic. It should not be
too difficult to make N greater than 0.02., Also, it 1s clear,
from the cubic dependence of C(s) upon ry, that most of the
volume-pumpling excltation of the resonant mode occurs near the
large end of the conical part of the outer shell, Slnce the
most compliant part of the inner shell is near the small end,
the belt of Q-felt which fills the interspace between the two
ends would appear to be in a good location to help improve the
NR at thls resonance frequency,
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CHAPTER VI

EXPERIMENTAL ANALYSIS AND TESTING

INTRODUCTION

The purpose of thls chapter is threefold. PFirst,
we discuss the uses of experiments in vibratlion and acoustic
analysis. Thls discusslon 1s intended as a general gulde
to the purposes and methods of experimental analysis 1n
sound transmission. Second, these methods are implemented
in a series of (incomplete) experimental studies of various
features of sound transmission in axisymmetric shells and
spaces. These experiments are intended to clarify certain
features of the acoustlc and vibrational behavior of segments
of the system. Finally, experimental models are described
that can be used by NASA for comparison with the analyses
presented here.

PURPOSES AND METHODS OF EXPERIMENTAL ANALYSIS

Structural configurations, such as the Apollo CM,that
are exposed to acoustic environments, are subjected to experi-
ments for a wide varilety of purposes. Included in the fleld
of environmental testing are experiments designed to "proof
test" a structure. 1In such tests, the structure is subjected
to an anticipated environment in order to determine whether
or not its structural integrity and/or its operational be-
havior are affected by the environment. Tests may also be
carried out at lower levels of excitation to determline anti-
cipated response at locations where sensitive equipment may
be mounted. Such tests make 1t possible for vibration and
acoustic specifications to be generated for partlicular equip-
ments.

A second class of experiments 1s designed to gather
data on structural and acoustlc parameters. These parameters
are usually obtalned experimentally, either because they can-
not be directly or conveniently calculated or because it 1is
deslrable to correlate a calculation with an experimental
study. Some experiments are deslgned to gather only a few
bits of structural information, whlle others are desligned
to define almost all of the major parameters on the system.
In elther case the result of the experiment 1s a list of
data to be used 1In theoretical analyses for the prediction
of some other more complex bit of information about structural
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behavior or sound transmission. The experiments on cylinders
and cones descrlbed in this chapter fall within this category.
In fact, we propose some measurements of structural parameters
that .can be calculated from theoretical concepts, thus enabling
predictions of sound transmission to be based upon as much ex-
perimentally derived information as possible.

Finally, of course, there are experliments that could
be called "research tests". Such experiments are used to
test directly theoretical calculations of modal density,
response ratios, dampling, or other parameters. They may
also be used to test theoretical assumptions about the way
the structure is behaving in various segments, frequency
ranges, or modes of motion. The experiments that we describe
on interspace resonance fall in this category.

It is this use of experiment to determine the basic
physical processes governing system behavior that we define
as "experimental analysis". The structures or configurations
used in the analysis of the Apollo CM, for example, might
involve panels having the same membrane rigidity as the CM
but having greatly differing flexural rigidity. If the NR
shown by the model agrees with the theoretical analysis,
and with tests on the CM itself, then the presumption that
membrane stiffness controls the dominant behavior 1is valid.

The example above serves to exemplify the methods of
experimental analysis. Frequently, the "model" will be quite
different from the system belng studled.  The actual structure
may consist of segmented sandwich structures with reinforcing
frames and longerons. The model may be a homogeneous cylinder
having one skin thickness when membrane stiffness 1is studiled,
a second thickness when flexural stiffness 1s studled, and a
third thickness when structural resonances are studiled.

Once the dominant mechanical behavior has been analyzed,
changes in the model can be introduced to affect the response
(or sound transmission) in a desired manner. If, for example,
we find that resonant effects dominate, we might want to add
structural damping. If stiffness effects dominate, a change
in panel thilckness could be Introduced. Such changes can be
tested in the model and then, 1f deslrable, incorporated into
the actual system for evaluation.
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It has not been possible, durling the course of this
study, to carry out a complete experimental analysis of the
Apollo CM acoustic model. We have been able to test some
particular theoretical concepts, and such testing has enabled
us to madify and improve our analyses. Three parts of the
CM have been studied in some detail: the inner shell hatch
cylinder (item 5), the exterior cone (items 1,2), and the shell
interspace volume (item 11). These studies will now be described.

EXPERIMENTAL INVESTIGATIONS OF HATCH CYLINDER

Scaling of Hatch Section of Inner Shell

It is possible to investigate the NR of the CM in scale
model. However, difficulties in the scaling process itself make
this task complicated for guch a complex structure. The approach
we use 1s to scale the properties (membrane and/br flexural
rigidity) of the various geometrical shapes appropriate to a
given frequency range, and keep careful watch on the non-scaled
properties (such as resonance frequencies and the non-scaled
rigidity) to insure a valid experiment.

For the present investigation, a 1l:4 scale of dimension was
selected, The first model constructed was the inner shell hatch
including the cylindrical section and the hatch cover, shown in
Fig. 30. A linear dimension scale of 1l:4 will give a frequency
scale of 4:1 1f the stiffness ratlos are preserved. The NR will
be invariant if all significant stiffnesses are scaled the same.

The hatch cover and hatch require both c¢ylindrical and flat
plate geometry in the first model. This requirement lllustrates
the dependence on the model described above, with a different
scallng technique used for each kind of behavior. The cylindrical
sectlion responds to very slow pressure ehanges by changing radius
uniformly as described 1in Chapter III. The appropriate property
to scale 1s the in-plane stress, and, slnce this is borne by the
faces of the sandwlch structure, the scale cylinder section has a
wall thickness of 1/4 the total of the inner and outer face
thicknesses.

Such a scale model will be valid for static pressure changes
and for very slowly varying pressure. It is loglcal to inquilre:
"What is the highest frequency for which such a scale model can
be considered valid?" The answer to this question lies in the
disposition of both the original and the scale-model resonant
modes. For the hatch, the first resonance will be higher in the
original than in the scale model, slnce we have scaled stiffness
by 1:64 and mass by l:4, increasing the mass-to-stiffness ratio.
Concentrating our attention on the scale model, we find the first
dishing mode to be at 600 Hz. Interpreting this for the original
hatch, we can say that the first dishing mode 1s much higher than

150 Hz.
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One set of resonant modes of the cylindrical shell in-
volves bending waves in the shell along both the circumference
and the height. Since only 1ntegral wavelengths are permitted
along the circumference, no net volume displacement results
from such modes. An observer located on the axlis of the cylinder
would see no pressure disturbance from such modes. The first
radius expansion mode (ring mode, m = O) will occur at fny g =
4600 Hz in the 1:14 scale model, and 1150 Hz in the original
structure. In summary. we could use such a model 1in experiments
up to at least 300 Hz.

Quasi-Static Pressure Response Experiments
The low-frequency model tests are conducted by immersing

the model into a spatlially uniform pressure fleld. This fleld
i1s generated 1n a sealed test chamber. Figure 31 shows the test

FIG. 31 SCALE MODEL IN TEST CHAMBER
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chamber, a plywood box of inside dimensions 1.9 x 2.3 x 2.3 ft.
An Altec-Lansing #20802 air-cooled high-intensity 15" loudspeaker
mounted on one wall exclites the air space. Quick-release catches
allow access through the gasketed rear panel. Uniformity of

the pressure field inslide is assured by operation below the

first acoustlical resonance of the alr space; the lowest mode
occurs at 20 Hz to 200 Hz. This range would correspond to

5 Hz to 50 Hz in a full-scale experiment. The loudspeaker will
produce sound pressure levels over 120 dB inside the box.

Levels of 105 and 110 dB were used to provide adequate signal
levels 1inside the scale model.

The electrical apparatus was arranged as shown in Fig. 32.
The reference microphone is part of a feedback loop which ampli-
tude-modulates the oscillator output and holds the sound pres-
sure constant inside the test chamber. The motorized drive
linking the oscillator and the pen recorder slowly sweeps the
frequency range, and the recorder traces the amplitude of the
sound pressure Iinside the model, as measured by the receiving

microphone.

Vibration sensitivity of the microphones could be a
significant source of error, since the reference microphone and
the scale model hang from hooks in the top panel of the test
enclosure. Panel resonances of the enclosure do occur 1in the
experimental frequency range. Two approaches were combined
to combat this problem. Stiffeners were used to increase the
panel resonance frequencies. Applied damping to the panels
ts combined with spring-mass 1solation for the recelving and
reference microphones to provide conslderable vibration reduc-
tlion at the hilgher panel resonance frequency.

The measuring apparatus was first calibrated by selecting
two microphones of nearly identical pressure-vs-frequency
response, and adjusting the voltage gain of the sound level
meters to give the same absolute response with excitation from
a B and K plstonphone source standard. Since the experiment
measures the difference between two levels, a final check is
made by placing the receiver microphone in position without
the model, and plotting the difference between 1t and the
reference. With thilis difference set at zero, small values of
NR can be measured quite accurately. This calibration procedure
was repeated for each experiment.
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Constructed Models and Test Results
The cylindrical models that we shall examine are:

1) Cylindrical shell, scaling membrane (extensional)
stiffness.

2) Cylindrical shell as above, with one end piece scaling
the bending stiffness of the hatch cover.

a) Set-in hatch (Fig. 33)
b) Overlapping hatch (Fig. 34)

1) A cylinder with 1/2-in. thick end plates held rigidly
apart by l-in. diameter posts, as sketched in Fig. 35, was built
with an 0.005~in. aluminum wall. Care was taken to ensure that
the cylindrical wall was kept smooth and wrinkle-free. The

FIG. 33 SCALE MODEL OF SECTIONS 4 AND 5 OF
APOLLO CM. THIS MODEL HAS A 7.0"-DIA.
SET-IN END PLATE AND 0.005" WALL
THICKNESS
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SCALE MODEL AS IN FI1G.33 EXCEPT WITH

7.2"-DIA. END PLATE

FIG. 34
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FIG. 35
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performance of thils cylinder, which models only the membrane-
stiffness-controlled wall, is shown in Fig. 36. Modifying Eq.
(18) by a factor of 4/(5 - 4v), to correspond to the assumption
that the end plates do not move axially, gives a calculated
value of 50 dB NR.
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2) A second cylindrical shell made of 0.004-in., thick T6
tempered aluminum was rolled into a 7.0-in. diameter cylinder
7.5 in, high with a single 1/8-in. overlap seam sealed with
epoxy. A 3/8-in. thick aluminum disc was set into one end of
the cylinder and a bead of epoxy run around the jJoint. A 1/2-in.
diameter hole provides receiver microphone access. For the first
test, a similar 3/8-in. thick disc was sealed into the opposite
end. The entire assembly was pressure-tested in a water bath to
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detect small leaks. The NR of this cylinder with 3/8-in., end
plates 1s shown in Fig. 37(a). The calculated NR, based on the
membrane compliance of the shell and the flexural compliance of
the end plates, 1s shown by the heavy dashed line at 44 dB NR.
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One 3/8"-thick end disc was then replaced with a 1/8"-thick
disc installed in the same manner as before. The NR curve for
this arrangement is shown in Fig. 37(b). The calculated NR is
LO dB, determined almost entirely by flexural compliance of the
1/8-in. disc. A different joint was tried by using a 1/8-in.
thick disc that overlapped the cylinder with an epoxy-filled
seam, as shown in Fig. ?4. The performance curve is shown in
Fig. 37(c). Figs. 37(b) and 37(c) show that the edge conditions
of the hatch cover can have an effect on its compliance and,
consequently, the NR obtailned.
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CLETE S

AND 6 OF APOLLO CM

We conclude

have on the abillty of such a shell to follow membrane-stiffness
Tis effect will be more pronounced in the next sec-

control.
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from the lack of frequency-dependence in the
NR experimental data that the quasistatic analysis 1s suffi-
cient to predict the NR of the structural elements tested here.

The disagreement between theory and experiment (3 - 6 dB in
Fig. 37) points out the considerable influence minor wrinkles

tion, where experiments with a larger model of a conical shape
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are described. The reduction in the NR obtained by changing
from a set-in end plate to a lap Jjoint should be attributed to
the numerous small wrinkles seen in Fig. 34 that were permitted
by the lack of inner support when the set-in end plate was
removed. When the model was constructed with conslderable care
to avold these wrinkles, excellent agreement was obtained
between the theory and the experiment.
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Vibration Tests

We would now like to examine the vibration of the cylinder
wall. The wall is supposedly membrane-rigidity-controlled. It
1ls not clear that we can ignore the effects on the vibration
levels caused by nonuniformities or discontinuities such as
ribs, supports, or seams.

Eguigmentf—Vibration-measuring equipment was added to the
pressure test equipment shown in Fig. 32. A small piezoelectric
accelerometer weighing about 1 gm is attached to the wall at
various positions, and the output is amplified and filtered in
the same way as the receiver microphone signal for NR tests.

The accelerometer channel 1s calibrated so that the absolute
vibration level can be recorded as a function of the frequency
of the applied acoustic excitation. The low-pass filter between
the receilver microphone preamplifier and the level recorder
passes only those signals below 300 Hz. This filter eliminates
false responses to high-frequency excitation generated by non-
linearities in the loudspeaker or mechanical rattles in the

test chamber or model.

The first cylindrical model described under section 3 1s
now instrumented for acceleration at three poslitions as shown in
Fig. 38, Using the same test chamber and a uniform 105 dB SPL
acoustic excitatlion, a plot of the wall vibration vs frequency

was obtained. Such a plot is shown in Flg. 39. The corresponding
NR measurement was shown in Fig. 37(a).

The cylinder was then modified by adding internal axial
stiffening ribs at different positions on the outer circumference.
Each rib was 3/4-in. deep and 1/8-in. wide aluminum beam fastened
to the cylinder wall by epoxy. The beam length gave a 1/4-in,
overlap support from the end plates, as shown in Fig. 38.

Adding two ribs spaced 120° apart produced no change in the
measured NR, as illustrated in Fig., 40. The point vibration
levels were somewhat affected, as a comparison of Figs. 38 and
42 shows. The data in Figs. 38 and 41 were taken at the same
position, away from a rib, while the data in Fig. 42 was taken
near a rib.
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EXPERIMENTAL STUDIES OF CONICAL OUTER SHELL OF THE CM

Scaling the Outer Shell

The second portion of the Apollo CM to be modeled 1is the
entire outer shell. This consists of the sections numbered 1,
2 and 3 in Fig. 14. For our purposes, this complex shape can
be simplified and represented by only two surfaces, a spherical
segment (dish) representing 3 and a cone representing 1 and 2.
A 1:8)dimension scale was selected to fit the model in the
existing test chamber.

In contrast with the cylindrical model, both the conical
sidewall and the dish bottom are hypothesized to be controlled
by membrane stiffness, and thus the appropriate quantity to
scale for both segments is the membrane compliance., Since the
in-plane stresses are carried in the inner and outer faces of
the steel sandwich structure, the scaled cone and scaled dish
are 1/8 the total face thicknesses. The hypothesis of membrane-
stiffness control was subject to some doubt in the case of the
bottom dish, and one result of the experimental analyses has
been to resolve this point.

The scale model described above should simulate the NR
behavior of the original structure when exposed to pressure
fluctuations below structural resonances of either the original
or the scale model. An estimate of the lowest structural
resonance will define the upper frequency 1limit to the model's

usefulness.

Concentrating our attention on the larger and thinner cone
structure, we might consider bending waves along the slant height
and the circumference. As in the case of a cylinder, we see that
only integral numbers of wavelengths are allowed around any
circumference lying in a plane perpendicular to the axis, and
thus no net volume displacement is expected inside from such
resonant motion. The first radial expansion mode may be estimated
by the ring frequency of the largest circumference; this would
occur at 3200 Hz in the model and 1/8 this, or 400 Hz in the

original.

We can estimate the lowest flexural resonance freguency of
the conical shell by replacing it with a cylinder of the same
average radius, Thus,for the 1:8 scale model, the height of the
eylinder is 16 in., and 1ts average dilameter 1s 5 in. The

lowest Internal acoustic resonance 1s fa = 425 Hz, From Eq. (90),
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f -3
min 2 x 10 -
—— = 15/=2—— = 0,18 (161)
a V3°5 ,

or, fmin= 76 Hz.This resonance, which is presumably non-volume-

pumping, will occur in the frequency range of the experiment. The
asymptotic frequency separation between structural modes is

2cc -3 5
_ £ _ 2 x 10 X 2 x 107
bp = —— = 7516 ~ 0.8 Hz (162)

Thus, in the region of structural resonance, we can expect many
resonances to be observed in the vibration response.

NR Measurement Apparatus

Quasistatic pressure testing was carried out in the same
test chamber as described above., In order to accommodate the
larger size of the proposed model, the 15-in. dliameter loudspeaker
was removed to the outslde of the chamber. For a later part of
this experiment, a source of adjustable low-pressure air was
brought into the chamber. No significant change was noted in
the frequency range over which a uniform pressure field could be
generated; the new scale factor makes the test range of 20 to
200 Hz correspond with 2.5 to 25 Hz in a full-scale experiment.
Uniform sound pressure levels of 105 dB were developed inside
the test chamber.

Construction of Outer Shell Model

The cone portion of the model was constructed of steel
0.002 in. thick. Since such thin steel is not available in a
sheet large enough (20 in. x 40 in.), the surface was constructed
by Jolning together a number of triangular pileces, each having
a height of 20 in. and a base of 6 in. Eleven such pieces were
joined by spot-welding a narrow (1/16 in.) overlap seam as shown
in Fig. 43. A strip of tape seals each seam air-tight.

‘The validity of substituting a pieced construction for a
homogeneous sheet was investigated by tensile-testing sample
2-mil steel strips 6 in. long and 1/2 in. wide, and comparing
the force-elongation curves with those of strips having spot-
welded joints and also epoxy Jjoints.
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FIG. 43
SPOT-WELDED SEAM
(SPACING 1S 1/8 IN.)

It was observed that, after a short region of creep of the
sample in the test machine jaws, a long linear region follows
where all samples, both without and with joints, behave alike.

In each case two samples were tested, and the results are identica.
until the point of rupture is reached. It is concluded that the
use of the spot-welded seams has no effect on the membrane com-
pliance.

The bottom dish of the model was constructed from a steel
pan sold as a child's winter toy. Its radius of curvature and
overall dlameter were suitable, but its thickness was 0.032 in,,
or approximately twice the thickness required in the model. How-
ever, 1t was used for the first assembly to check the behavior
of the cone wall, and to investigate the hypothesis of membrane-
stiffness control of such a large-radius spherical segment.
Although the thickness of 0.032 in. 1s double that for a scale
model based on plane stress, it is less than 1/4 the required
thickness (0.14 in.) if bending rigidity is assumed to control
the behavior. This would scale bending stiffness by 1:64, and
give an extremely low NR in the tests.

The steel bottom dish is shown in Fig. 44 with the ring used
to align the rather flexible cone during the application of the
final epoxy Jjoint. A rubber insert in the Jjoint of the ring
keeps it from contributing to the compressional stiffness of the
cone. The assembled cone is shown in Fig. 45. The top of the
cone is truncated, and a 1/2 in. thick disc of aluminum 1 in. in
diameter is epoxied in place. This allows fitting of the two
support pins and the 1/2 in. receiver microphone access hole.

The model is shown in the test chamber in Fig.
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FIG. 44
BOTTOM DISH AND RING

FIG. 45
ASSEMBLED CONE
(1:8 SCALE)
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FIG. 46
SURFACES SMOOTHED BY
2.5 CM Hg INTERNAL

PRESSURE

The results of the NR tests are presented in Fig. 47(a).
The curve shows the measured NR. The results shown in this
Figure are surprisingly 1low, and a number of resonances are
observed starting at 80 Hz. Inspection of the cone showed a
number of wrinkles in the skin caused by distortions during the
spot-welding of the seams. To investigate the possibility that
these corrugations do not stiffen, but actually may act as small
bending-rigidity controlled areas, a plastic tube carrying alr
at low pressure (not above 5 cm Hg) was introduced into the
model. This pressurization served to smooth the skin in many
places (Fig. 46), and the results shown in Fig. 47(b) show
quite a significant difference in the measured NR. About 20 dB
of NR 1s obtained, and resonant effects below 100 Hz are eliminated

While these results are not close to the 40 dB NR predicted
by quasistatic analysis, 1t is safe to conclude that the compliance
of the bottom dish 1s not bending-rigidity-controlled, and that
a cone constructed without wrinkles or corrugations may well
follow the membrane-rigidity hypothesis better than the model
tested here.
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Membrane-~Stiffness-Controlled Walls

Conglderable disagreement was reported between theoretical
and experimental values of NR for the outer-shell model in the
preceding paragraphs. Not only was the experimental NR much less
than predicted by membrane~stiffness-controlled shell theory, but
resonant dips in the NR were seen (Fig. 47(a)) at frequencies
between 80 and 200 Hz. This is quite far below any radial-
expansion mode, which would allow net volume displacement to
occur. It was suggested that, in the case of the conical outer
shell, wrinkles in the 0.002-inch steel skin affect the NR. To
Investigate this, a second outer-shell model was constructed.

A 1:10 dimension scale was used instead of 1:8,
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Construction and NR Tests of Aluminum Outer-Shell Model

The second outer-shell model to be constructed, shown 1n
Fig. 48, reproduces only sections 1 and 2 of Fig, 14. The conical
shell described above was constructed from 0.002-in. thick steel,
the proper thickness for a 1:8 scale model. The present 1:10
scale would require 0.0016-in, steel, which would also require a
pieced-together construction., Since such construction was sus-
pected of affecting the membrane-stiffness control through the
dimpling, aluminum sheet was used 1lnstead. The appropriate thick-
ness, 0.0048 in., is three times as great, since the ratio of the
Young's modulus of steel to that of aluminum is 1:3, Such alumi-
num sheet 0.005 in. thlck was avallable in a size large enough to
construct the model from a single nilece,

The single seam used to fabricate the model could not be
welded successfully in alumlnum with the avalilable equipment.
A cemented seam was used instead, with a strip of tape to ilnsure
against small air leaks. Such cement or epoxy seams were
previously found to have no effect on the elastic modulus of
the steel test strips. It would be expected that this would
also apply to aluminum three times as thick.

The cone was terminated with a 1l-in., thick aluminum plug
at the top, and was sealed to a thick wooden base., The assembly
is shown in the test chamber in Fig. 48. The comparative
smoothness of this model is evident in a comparison with Fig. 46
showing the earlier model. Access for the receiver microphone
was provided through the wooden base.

FI1G. 48

VIBRATION PICKUP POINTS
ON OUTER CONE ONE-TENTH
SCALE MODEL
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The results of the NR tests are shown in Fig. 49. The
curve shows the measured NR. It is quite flat and shows
higher NR than the curves taken for the 1:8 model. The new
1:10 scale makes the test range of 20 to 200 Hz correspond with
2 to 20 Hz in the full-scale structure. Uniform sound pressure
levels of 108 4B were obtained inside the test chamber.
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To check the possible connection between lower NR values
and wrinkles, a single dimple was temporarily made in the model
wall, and a 6-dB reduction in the NR was observed at 90 Hz.
Removing the pressure allowed the wall to return to its previous
shape, and the NR rose to its previous value.
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Vibration Measurements

A small piezoelectric accelerometer was then mounted at
three positions on the model, as shown in Fig. 48, Applying
the same uniform 108 dB SPL acoustic exeitation as used to
measure the NR, a plot of the wall vibration versus frequency
was obtained. Such plots are shown in Figs. 50 and 51. The
lower curve in Fig. 50 1s the background vibration level,
measured with no acoustic excitation. Sufficient signal-to-
noise ratio exists at all measurement frequencies to determine
the actual vibration levels without narrow-band filtering.
These plots show a number of distinct resonances below 80 Hz,
and then a quite uniform increase 1n vibration level of
approximately 24 dB/octave.

This is in sharp contrast wlth the accelerations to be
expected from the NR curve of Fig. 49. Since it shows a
constant NR, corresponding to a constant volume displacement,
we would expect a slower 12 dB/octave increase in the wall
accelerations. The resonances observed are not necessarily
unexpected, but they are not capable of producing net volume
displacement inside, and thus would not affect the observed NR.

The preceding discussions have shown the usefulness of
detailed examination of wall structures supposedly controlled
by membrane-rigidity alone. The results for the 1l:10-scale
smooth cone have demonstrated that quite different behavior is
observed, depending on whether or not wrinkles or corrugations
are present. The validity of the simple quasistatic analysis

for cone structures 1s supported by the data, although the ab-
solute levels are not so high as predicted.

Vibration measurements have verified the presence of
resonant modes in the wall structure, which, as predicted, are
not assoclated with corresponding fluctuations of NR.

RESONANCES OF INTERSPACE CONTAINED BETWEEN AXISYMMETRIC SHELLS

Recap of Theoretical Study

Chapter V presents a theoretical study of the acoustics of
the interspace between axisymmetric shells. An approximation
technique, the Rayleigh-~-Ritz method, was adopted to predict the
upper limit to the acoustic resonances in the interspace when
this region is not geometrically simple enough to handle
analytically. After illustrating and verifyling this method,
both with a simple problem which could be handled analytically
and with approximation technique, an acoustic model of the
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Apollo CM was analyzed. Two of the resonances calculated fall
into the range below 50 Hz. These two resonances are charac-

terized by:

Mode Shape Frequency Type of
Resonance

¥ = [cos %?) - 0.361 cos < >] cos m¢ 40 Hz m=0,
longlitudinal

mode

¥V = [sin %;) + 0.476 sin < >J cos mo 43 Hz m=1,
azimuthal

mode

This section describes the experimental analysis of the
acoustic resonances. The purpose of the experiments was to
locate resonances, especlally below 50 Hz in the interspace,
and to 1dent1fy these resonances as to their "longitudinal' or

"azimuthal" character.

Experimental Model and Apparatus

Model.—The acoustic model of the Apollo CM was constructed
to a T:10 scale. Frequencies measured, therefore, will be ten
times those of the full-scale model. The model consists of
three basic parts, as illustrated in Figs. 52 and 53.

1. A wooden carved-out base plate (used in an earlier
experiment)

2. A truncated aluminum cone

3. A wooden lnner plece separated from the base plate and
cone by dowel spacérs

The dimensions of the model are shown in Fig. 54. The truncation
of the small curved surface that would exist atop the CM has
negligible effect on the acoustics of the interspace. The base
plate was fitted with rubber tubing along its bottom edge to
assist in allowing a tight fit. Any potential air leaks at the
bottom were eliminated by applyling tape and clay.
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Apparatus.—The two problems encountered in measuring the
resonances are:

1. How to excite the acoustic resonances while maintaining
"rigid" boundaries.

2. How to measure the acoustlc signal at various positions
in the interspace without perturbing the sound field.

The first problem 1s solved by using a horn driver with a high-
impedance "snout." A high-impedance source is desired because
the driver is replacing a solid, high-impedance surface. In
source position 1 (see Fig. 55) the snout consists of a small
amount of packed steel wool followed by a wire-filled tube of
13/16 in. inner diameter. In position 2 (see Figs. 54 and 55)
the wire-filled tube is followed by a 1/2-in. diameter, 2-in.
length tube of tightly packed steel wool. The frequency response
of these sources in the free field was measured and found to be
fairly constant below 1000 Hz. Since the source of position 1
excites the model symmetrically, only axially symmetric (m = O)

modes are excited. The m refers to eim¢ dependence. The asym-
metrically placed source in position 2 excited both m=0 and m# O

modes.

The measurement of interspace pressures is accomplished by
usi a 1/&-1n. Bruel and KJaer condenser microphone. Holes of
17/64-in. diameter are drilled in the side of the cone in posi-
tions labeled A through J in Figure 52. When not in use, these
holes are filled with shallow wooden caps. When the relative
phase between signals at two different positions in the model
was desired, a second 1/4-in. Bruel and Kjaer condenser micro-
phone was used.

A schematic of the apparatus is illustrated in Fig. 55.
The frequency response of the interspace is plotted by a General
Radio Graphic Level Recorder. The relative phase is measured by
feedlng the two microphone signals into the horizontal and
vertical inputs of the oscilloscope, and observing the Lissajous
pattern,

Characterizing the Resonant Modes

Symmetric m = O modes are characterized by a mode shape
function ¥ that depends only on s. This entails measurements
in microphone positions A through G. The lowest m =0, n =1
mode 18 characterlized by maxima at positions A and near G, and
by a minimum somewhere near E. Asymmetric modes, especially
m=1 and m = 2 modes, are determined by finding from Lissajous
patterns the relative phase between signals recelved at micro-
phone positions G, H, I and J.

146



FREQUENCY
OSCILLATOR COUNTER

POWER
AMPLIFIER

l !

SOURCE
POSITION

ACOUSTIC —

MODEL
APOLLOCM
(1710 SCALE)

SOURCE
POSITION
2

GRAPHIC o

LEVEL {)\
RECORDER

H Vv

‘FIG. 55 SCHEMATIC OF EXPERIMENTAL SET-UP
147



Experimental Results

In the 1:10 scale model, we are primarily concerned with
resonances below 500 Hz (50 Hz full-scale). Two such resonances
are observed: one at 315 + 20 Hz and one at 415 + 10 Hz. The
+ 10 and + 20 Hz tolerances correspond to small changes in the
model set-up. It is to be noted that these resonances are
fairly sensitlve to changes in the bottom and silde spacing
(especially for the m = 0 mode). The smaller the spacing, the
higher the kinetic energy and, therefore, the lower the
frequency.

The lower resonance is found to be the lowest m = O mode;
the resonance at 415 Hz was identified as the lowest m = 1
mode. Another resonance, ldentified as the m = 2 mode, was
located at T45 + 10 Hz. Note that the reading from the graphic
level recorder does not give the resonance frequency precisely
(especially at higher frequencies). The numbers given for the
resonances are found more exactly with an oscilloscope and
frequency counter,

Sample frequency-response plots are displayed
n i

positions.

Comparison with Theory - Conclusions
The table below shows the important theoretical calculations

and experimental results. The experimental data is adjusted to
full scale (frequencies are divided by 10).

Resonance Frequency

Mode Experimental Theoretical
(upper limit)
m=0 31.5 + 2 Hz 40.5 Hz
m=1 41.5 + 1 Hz 43.2 Hz
m= 2 4.5 + 1 Hz 80.5 Hz

Not only does the theory furnish an upper limit to the
actual resonance frequency, but it also provides a result which
is fairly close to the upper limit. Moreover, careful analysis
of the frequency plots with the microphone in positions A
through G indicates that the experimental mode shape is in good
qualitative agreement with the theoretical prediction.
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The above provides reasonably conclusive evidence that there
exist two natural acoustic resonance frequencies below 50 Hz in
the interspace region of the acoustic model of the Apollo CM.

One of these is of "longitudinal" character; the other is an
azimuthal resonance. If excited, these resonances may not be
damped out. There exists, therefore, the possibility of noise-
reduction problems at these frequencies unless effective
methods of low~-frequency sound absorption are employed.

RECOMMENDATIONS FOR THE DESIGN AND CONSTRUCTION
OF AN ACOUSTIC MODEL OF THE APOLLO CM

Introductory Remarks

The preceding analyses have proviced a basis for suggesting
the primary modes of sound transmission in the Apollo CM at low
frequencies. In this section, we describe a simplified model of
the Apollo CM that will simulate its acoustical performance. Its
detailed construction and structural configuration is quite dif-
ferent from the actual CM. The purposes of the deviations from
the original are:

l. to make i1t simpler to change certain structural and
acoustical features of the model

2, 1insofar as possible, to make the model lighter and
easier to fabricate

3. to allow a testing of the conclusions of this report
with regard to the relative importance of flexural
vs membrane rigidity and resonance effects

4., to reduce the cost of model construction

Selection of the Skin Thicknesses

A simplified diagram of the Apollo CM is shown in Fig. 13.
It is formed of sandwich panels with dimensions and materials
as Iindicated in Table 71 £ We believe that this structure can be
modeled with homogeneous steel and aluminum panels applying the
following principles:

1. Steel sandwiches are replaced by steel plates, aluminum

sandwiches are replaced by aluminum plates, except as
noted below.
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2. Membrane-rigidity-controlled elements are replaced by
homogeneous plates of thickness 2t = H, In this case,
steel (aluminum) plates may be replaced by aluminum
(steel) plates if the thicknesses are changed inversely
as the ratio of Young's modulus.

3. Bending-rigidity-controlled elements are replaced by

homogeneous plates of thickness H=h (6t/h)1/3. In
this case, steel (aluminum) plates may be replaced by
aluminum (steel) plates if the thicknesses are changed
inversely as the ratio of Young's modulus.

4, Resonant effects in the structure are not modeled; it
is not possible to model simultaneously flexural rigidity
and wavespeed of a sandwich with a homogeneous plate.
This makes properties such as core density and ablating
material density and damping unimportant.

5. Resonant effects in the acoustic spaces, particularly
in the space between the shells, are probably affected
by the "Q-felt." The model should be designed so that
this space can be filled with a material of similar
flow resistance.

Qur analyses in Chapter III suggest that sections 4 and 6
display flexural rigidity control in their NR behavior while
sections 1, 2, 3, 5, 6, 7, 8 and 9 are membrane-controlled.
They are to be modeled, therefore, according to the rules in
items 2 and 3 above. A 1list of appropriate homogeneous
panels corresponding to the sandwich panels in Table I is
given in Table VI,

Inter-Shell Connections

The connections between the shells of the model should be
made between rigid joining sections. A suggested arrangement
1s shown in Fig. 57. A rigid frustrated conical plug "A" is
used as a structural termination at the apex of the outer
canlster. This mounts to a supporting ring on the hatch
section of the inner canister by three wvibration mounts. The
combined stiffness of these mounts should be less than that of
the ledge-hatch combination;

3K, < a%/Cy ¢ (163)
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TABLE VI
HOMOGENEOUS PANELS CORRESPONDING. TO SANDWICH PANELS IN TABLE I

Section | Material | Thickness H (mils) Controlling Behavior
1 steel¥* 16 membrane
2 " 16 "
3 " 120 "
4 aluminum 780 bending
5 " 20 membrane
6 " 397 bending
7 " 40 membrane
8 " 32 "
9 " 66 "

*If aluminum skins are substituted for steel,
increase thickness H by factor of 3.
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FI1G.57 ATTACHMENT POINTS AND STRUCTURAL .
CONNECTIONS IN CM ACOUSTIC MODEL
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ledge-hatch combination as determined in Chapter III. This
requires

K S 0.25 1b/in. ( 164)

Thls is a very soft mount, and cannot be relied on to support
any weight of the inner canister. It is essentially a guide
rod that keeps the inner canister from rocking.

The lower connection is made between mounting rings C and
D on the inner and outer shells. These rings can be fairly
heavy. Ring C is placed at the Jjunction of the spherical
segment base of the inner shell and its lower cylindrical segment.
Ring D 1is placed where the spherical segment base of the outer
shell Joins i1ts conical section. They can be Jointed by relativel
stiff spars, sufficiently rigid so as not to have resonances below
100 Hz or so.

Modeling the Q-Felt

The prototype Apollo CM uses a dense glass fiber blanket for
thermal insulation within the space between the two shells., Ve
have investigated the possible acoustic effects that such a
blanket would have. As presently envisioned, the blanket is
formed from Owens Corning PF-105-700 Fiberglas. It has an 0.00005

in, diam fiber and is compressed to a density of 6 1b/ft3. Glass
fiber of this fiber diameter and density has a flow resistance

of approximately 3000 rayls/in. (Ref. 34). Since this is much
larger than the acoustic impedance of the sound wave, any material
that can be placed in the space between the shells that will
occupy the same volume that the Q-felt does, will probably be an
acceptable substitute. Some candidates are balsa wood and closed-
cell polystyrene foam.
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RECOMMENDATIONS FOR ADDITIONAL STRUCTURAL MODELS
FOR TESTING NR PREDICTION METHODS

Introduction

In developling the methods for predicting low-frequency NR
presented in this report, we have sought to delineate classes
or primary forms of structural and acoustlic behavior. Our hope
is to assign sound transmission characteristics to each, and to
treat a complex structural configuration by reducing its behavior
to the appropriate set of forms. Some of these forms of behavior
(guasi-static deflection, interspace resonances and vent-shell-
internal volume resonance) have been examined theoretically and
experimentally. Others, such as structural resonance, and the
effect of bridging elements between the shells, have not been
80 fully examined. The purpose of the models described here is
to suggest ways of analyzing experimentally other potentially
significant forms of behavior.

In thils section we shall specify wall constructions which
should be useful ‘for studylng nolse transmission due to structural
discontinuitlies and bridging connections between shells. Appro-
prliate structural parameters, such as wall thlicknesses, dimensions,
etc., are suggested on the basls of analytical studles of these
effects.

Non-Uniform Wall Structures

The quasi-static compliance calculations derived in Chapter
III assume that the shells have uniform properties throughout.
Actual structures have hatches, stiffeners, bulkheads, etc.,
which locally stiffen or weaken the shell.

The first recommended test structure is shown in Fig. 58.
This structure, which 1s very much like the cylinder discussed
earllier in this chapter, would be designed, however, to have a
fundamental acoustic resonance at 100 Hz. This resonance
frequency requires that the cylinder be 5 ft long. Let us choose
a 3-ft dlameter and a skin thickness of 0.032 in. The funda-
mental structural resonance will be ‘

£ =135 (Wa)/2r, =57 (166)

if the'cylindrical shell edges are simply supported.
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If the cylindrical skin is attached to rigid end pieces by a
suitable clamping arrangement, there should be no noticeable
effect on tne NR of this cylinder due to resonance as stiffening
ribs are added.

”‘—___]F"—.\.\
] LIGHTWEIGHT
T / CYLINDRICAL
I STRUCTURE

RIGID END | I
!
1 STIFFENING RIBS
1
1
-+ ‘_-'LIL q
/—"’;:;;7‘4"‘::\

FIG. 58 CYLINDER WITH AXI1AL STIFFENERS TO TEST
- EFFECT OF STRUCTURAL INHOMOGENEITY

Let us now suppose that the cylinder wall is not connected
to the end pleces, However, the edges must be sealed, e.g. with
heavy tape, to keep alr from entering the contained volume. The
lowest resonance of the cylinder now corresponds to the condi-
tion where the circumference is a complete bending wavelength, or
to A = 2ma. The lowest structural resonance in this case is

£ . =-229 g (in.) ~ 1 Hz (166)
min Ke(ft)
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The lowest structural resonance frequency 1is greatly reduced
by removing the restraint at the end pieces. The addition of
ribs will cause some of these low-frequency modes to become

‘'volume-pumpers and reduce the NR. The added ribs should be

sufficiently rigid so that their first resonance is 100 Hz or
higher.

Effect of Bridging Connectlions

When direct mechanlical connections are made in double-shell
structures, an additional path for sound transmission is availl-
able. In Fig. 59, an experimental arrangement 1s shown that
illustrates a method of demonstrating these effec¢ts. Three
connecting spars are suggested: "A" i1s a connection between
points on the curved sections, "B" 18 a connection between
'resistive" positions, and "C" is a spar between positions of
very high impedance. Only one spar would be involved in a
single experiment.

CONNECTING
SPARS

LIGHTWEIGHT
|~ CYLINDRICAL

STRUCTURE

COMMON
R1GID BASE

FIG.59 DOUBLE CANISTER STRUCTURE WITH
CONNECTING SPARS AT LOCATIONS
OF VARYING MECHANICAL IMPEDANCE
TO TEST EFFECT OF BRIDGING ELEMENTS
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In Fig. 60 we show an equivalent circuit that aids us in
evaluating the effect of connections on NR. The source velocity
Vg 1s the unloaded skin vibration amplitude on the outer shell
in the absence of the spar. The point impedance of this shell
is 2,,, compliant for spar "A)' and resistive for spar "B.," 250

is a similar impedance for the inner cylinder. The translational

impedance of the spar, Zspﬁr‘ will probably be its mass reactance
at fréquencies below any resonance of the spar itself. The
appropriate impedances are:

W
v/ E i (curved cylinder) (Ref. 34)

1

o
=
o

> (167)

2 = 2.2 57— (flat panels) (Ref. 23)

Zspar = = 1% Mgpar

ANA-
N
(@]

FIG.60 EQUIVALENT CIRCUIT FOR DERIVING
SPAR MOTION
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Wz

_be computed. The point motion v

Using the general relation

oc
v, = (168)
ic zoc + Zic + Zspar

and the relations above for the impedances, the veloclity can
1e of the attachment to the

inner cylinder can be converted to volume velocity from
Heckl's analysis (Ref. 33) for flat plates, and from Roark
(Ref. 31) for the curved section. It must be remembered that
this volume velocity will be coherent with that existing in
the absence of the spar. The combined effect of both compo-~
nents of volume velocity must be considered to evaluate the NR.

Some suggested experimental parameters are:
Outer cylinder: g = 48 in., a = 18 in., H= 0,032 in.
Inner cylinder: g = 42 in., a = 15 in., H= 0,032 in.

The spar should be long enough to reach between the shells and

heavy enough to satisfy the condition zspar > Zoc’ Z1c at the

upper range of the frequency of interest (50 Hz in thils case).
At lower frequencilies for which Z = 2 Zic Interesting

_ spar oc”’
effects should develop.
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CHAPTER VII

IMPLICATIONS FOR DESIGN

CHOICE OF STRUCTURAL GEOMETRY

We saw in Chapters III and VI that the choice of structural
geometry can have a very significant effect on the low-frequency
noise reduction. The flat structural segments have a compliance

which 1s controlled by flexural stiffness, whereas membrane stresses

tend to dominate the behavior of curved structural segments.
Generally speaking, membrane-controlled compliances are signifi-
cantly more resistant to volume deflection than are flexural ele-
ments. In the case of the Command Module, the inner-shell sound
transmission was primarily dominated by the flat ledge section
of the hatch. As a result, only 10 dB of NR was achieved by

the inner shell, whereas the outer shell, which had no flat
segments, had a noise reduction of 40 4B.

In Chapter III analyses are given which suggest when membrane
control of curved structures will be obtained. In the case of the
cylinder, the length must be somewhat greater than the geometric
mean of the radius and the wall thickness of the cylinder. For
the case of a spherical shell segment, the depth of the segment
must be sufficlilently large in comparison with the radius of curva-
ture. These criteria are only general, however, and the detailed
behavior will depend on the particular situation. In cases where
doubt is anticipated, an experimental analysis of typical systems
is likely to be more effective in leading one to an appropriate
conclusion than a complex series of detailed calculations.

The general axisymmetric shape of space vehicles is chosen,
of course, for constructional and aerodynamic reasons. It
happens, however, that this geometry also favors high values
of low-frequency NR. As we have discussed, this geometry tends
to discriminate against volume-pumping modes.

DISCRIMINATION AGAINST STRUCTURAL RESONANCES

We have seen in Chapters III and VI the deleterious effects
that structural resonances can have on the low-frequency noise
reduction. Flat segments can have structural volume-pumping
resonances at relatively low frequencies. If a conical or
cylindrical shell is interrupted by longitudinal ribs, some
of its lower-freguency resonances can also become volume-pumpers,
Volume-~pumping is important as long as the inner contained
volumes are stiff — i.e., below their first acoustical resonance.
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There are two methods by which one can avoid such structural
resonance effects. One way is to select structural configurations
and parameters so that the lowest resonance frequencies occur
above the first acoustic mode of the contained space. This can
be done by selecting panel sizes and thicknesses so that the
lowest panel mode of the structure is shifted to higher fre-
quencies.

The other way consists of adding damping to the structures,
but this has marginal practical utility. An increase in the
structural damping by a factor of 10 can result in an increase
in the noise reduction by 10 dB in a band near the offending
resonance., Increases in damping of this order, however, are not
usually achieved easily. If the structure is formed from sand-
wich panels, then additional applied damping usually involves a
substantial weight penalty. It is conceivable that the structural
panels could incorporate the damping, using a core material that
has a high loss factor. This is perhaps the best hope for useful
amounts of structural damping, but may involve considerable
development effort.

Other kinds of structural resonances that can occur at low
frequencies include the resonances of mass elements attached to
curved sections of structure. The point load impedance of a
curved structure at low frequencies is a stiffness reactance
(as gilven in Chapter IV). This stiffness can act with an
attached mass to result in a volume-displacing resonant vibra-
tion.

COMBATTING THE EFFECTS OF ACOUSTIC RESONANCE

The procedures used to minimize the effects of acoustic
resonance on sound transmission at low frequencies generally
parallel those for combatting structural resonance. They
include changing the geometry so that the undesirable resonances
occur at higher frequencies and adding damping material (acoustic
absorption) so that the resonance is attenuated.

Roughly speaking, the condition for critical damping of
acoustic modes 1s that the total flow resistance in the acoustic
path be pc, the characteristic impedance of the acoustic medium.
If the resistance is substantially smaller than this, the
absorption will not be so effective as it could be. If it is
substantially larger than this, the fluid will avoid the absorp-
tlion material by flowing around it, if alternate paths are
available.
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We saw-in Chapter III that double-walled shell structures
can have low-frequency resonances 1f long path lengths are
allowed. These resonances should be avoided, either by blocking
the flow path so that the resonances are moved to higher fre-
quencles, or by providing appropriate acoustic absorption in the
interspace so that resonant modes are damped out. We saw that
the thermal-insulating Q-felt is not a good acoustic absorber,
since its flow resistance is very high compared with the acoustic
impedance of the medium. However, in the Apollo CM the Q-felt
may block the flow path sufficiently so that the low-frequency
modes do not occur.

We also saw in Chapter III that low-frequency resonances may
be associated with the venting system, 1n combination with portions
of or all of the interspace volume. The effect of this resonance
can be eliminated by designing the vent so that it has sufficient
acoustic mass (constriction) for its resonances to occur at very
low frequencles. A second approach is to introduce a flow
resistance in the path, so that the resonance is critically
damped. Vent damping should not cause significant vent operation
problems, since the periods of the resonances of concern are of
the order of one-tenth of a second, and this generally is much
shorter than the time which the venting system needs to readjust
the interspace pressure.

GENERAL COMMENTS

In a sense, design for good low-frequency noilse reduction
involves much the same considerations as design to contain the
pressure in the spacecraft. The basic compliance analysis
presented in Chapter III is closely related to the pressure
vessel analysls that is required for predicting the structural
integrity of the vehicle. There are subtleties in the acoustic
design, however, that are not present in the mechanical structure
design. These have to do primarily with the occurrence of
structural and acoustic resonances that can severely diminish the
NR provided by the structure. It is these resonances and their
assoclated effects that we have tried to catalog and analyze in
the dlscussions of this report.

The transmilission of sound is a complex problem. At all times,
it is worth reconsidering the inclusion of experimental analyses
of potential designs in any spacecraft development program.
Acousticlans, faced with the problems of predicting the acoustical
behavior of rooms and the sound transmission properties of walls,
learned long ago to couple their calculations with model studies
and well-thought-out experiments. A similar development in the
field of space vehicle design would result in a great improve-
ment of our understanding of the basic processes at work in such
structures and perhaps result in a significant improvement of the
acoustical and vibrational behavior of these systems.
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